

• H₂O

- quantification

- some principles (you are spared the systematic approach)
- global deep mass balance

CO_2

- fluid composition, subsolidus phase diagrams (done)

- largely immobile (done)
- global deep mass balance
- quantification for subduction volcano output
- constrains on the H₂O and CO₂ cycles

H₂O

- H_2O in sediments is negligable small \rightarrow igneous crust and hydrated mantle - no argument for melting to be necessary in the subducting crust

Two likely regimes

 relatively cold subduction: 32-43 % of influx get subducted to >250 km depth
 relatively warm subduction: subducted lithospheric mantle gets hydrated and leads to flush melting of crust, no H₂O deeply subducted

- intermediate cases do almost not occur, because mantle dehydration and flush melting are coupled

