Resource Assessment Stored heat estimate

Boundaries of reservoirs

Stored Heat

Volumetric assessment of the total amount of heat stored in
a reservoir

Need to know reservoir volume, porosity and temperature
Estimate the proportion of exploitable heat-Recovery factor

Consider simple example:

1 km3 reservoir volume
250°C reservoir temperature
15°C reject temperature

15% porosity (water filled)




Stored Heat

Numerical expressions, constants & thermodynamic data

Rock density (p,) 2500 kg/m3
Water density (p,,) 800 kg/m3
Rock specific heat (C,) 1 Kj/kg°C
Volume (V) 109 m3
Enthalpy water (H,s5,) 1086 Kj/kg
Enthalpy water (H,s) 63 Kij/kg
Porosity (®) 0.15

Temperature drop (AT) 235°C
thermal energy rock = V-(1- ®)-p,-C.-(AT)

thermal energy water = V-(®)-p,, (H,50- Hys)

Stored Heat

thermal energy rock
5-10"7 joules = V-(1- ®)-p,C,-(AT)
thermal energy water

1.2:10"7 joules = V:(®)-p,, (H,s0 - Hys)

*more thermal energy contained in rock than water
svery simple assessment (no recovery factor)
sconsider useable energy & mode of utilization




Boundaries of Geothermal Reservoirs

Resistivity-MT data are used to identify the lateral extent of conductive
zones (layers) that are clay rich or filled with hot chloride water. In NZ,
dipole-dipole resistivity measurements have revealed the limits of
known geothermal plumes, but the margins need to be confirmed with
well measurements.

Hydrothermal alteration zonation patterns reflect the flow & extent of hot
water. Surface alteration can provide clues, but the best information is
obtained from geothermal wells in which subsurface zonation patterns
are determined. This includes identification of the top of the reservoir.

Fluid chemistry is used to distinguish upflow from outflow.
Geothermometers and tracers (Cl concentration) are used in
conjunction with the above information to interpret reservoir
boundaries.

Taupo Volcanic Zone

Shallow geophysical surveys — hot
water/ clay altered rocks.

Revealed the location of Mokai,
which had been omitted from earlier
resource assessments.

Boundaries are imprecise & need to
be calibrated. In general, reservoir
boundaries contained inside
resistivity anomaly (<10 ohm-m)

Red=conductive
Blue=resistive

0 25 50 km

o ———— Central TVZ: DC apparent resistivity
Resistivy Qm (Stagpoole and Bibby, 1998)
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Reduced permeability associated with clay-layer forms a barrier to fluid movement.
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Fig. 2. Map of the Gunung Salak contract area. The Salak contract area (solid black line) is shown along with the
commercial reservoir boundary (dashed black line), as well as the thermal features and the interpreted extent of clay
alteration based on MT-TDEM surveys (dashed grey lines). Wells are numbered based on the sequence of drill sites
established. Exploration wells drilled at Ratu are also shown. Cihideung hot spring lies 4 km north of the map boundary.
Lithology and alteration along cross-section A-A” is shown in Figs. 4b and 7. respectively.

Awibengkok

Stimac et al., 2008.

Surface thermal features have helium isotope signatures of 6 to 7 R/Ra indicating mantle helium
& a magmatic intrusion. The distribution of fumaroles, acid sulfate, bicarbonate & chloride springs
is characteristic of steep terrain in the vicinity of a composite andesite cone
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Stimac et al., 2008.
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Boundaries of Geothermal Reservoirs:
Chemical Indicators

Cl

S04 HCO3

Three graphs of water chemistry used Entholpy
to interpret reservoir conditions & fluid flow i’/9

Boundaries of Geothermal Reservoirs:
Chemical Indicators

Cl

CI-HCO;-SO, plot used to:

« distinguish water types o)
* interpret chemical structure =~ A A

» assess fluid flow

Mixing trends always appear as linear
arrays of data

S04 HCO3
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Boundaries of Geothermal Reservoirs:
Chemical Indicators

Cl

CI-HCO;-SO, plot used to:

» distinguish water types
* interpret chemical structure A AT
» assess fluid flow

© 0
Mixing trends always appear as linear '
arrays of data : @)
@)
@)
@)
@)
S04 HCO3

Boundaries of Geothermal Reservoirs:
Chemical Indicators

Cl

CI-HCO;-SO, plot used to:

« distinguish water types
« interpret chemical structure
» assess fluid flow

Mixing trends always appear as linear
arrays of data

S04 HCO3

11



Boundaries of Geothermal Reservoirs:
Chemical Indicators

Na/1000

Na-K-Mg plot-powerful combination of the
K-Na & K-Mg geothermometers.

c

Tina=Tkmg POt On full equil. curve
Tyna>Tkang PIOt below full equil NI o et N
Mixing with Mg-rich water

forms linear trend with Mg-rich
water

Giggenbach, 1988; 1992

Boundaries of Geothermal Reservoirs:
Chemical Indicators

Na /1000

Na-K-Mg plot-powerful combination of the
K-Na & K-Mg geothermometers.

S

€y 1000+ ¢, 7100 + Ve, =S
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Boundaries of Geothermal Reservoirs:
Chemical Indicators

Na/1000

Na-K-Mg plot-powerful combination of the
K-Na & K-Mg geothermometers.

Observe Na-K ratio with
Tuna = 300 °C

Boundaries of Geothermal Reservoirs:
Chemical Indicators
Na /1000

Na-K-Mg plot-powerful combination of the
K-Na & K-Mg geothermometers.

¢, /1000+¢, /100+ Vc =S
e X Mg
"%-No"=c, /105

"%-Mg”=100 VT /S
Mg

¢; in mg/ kg

Observe K-Mg ratio with
Tymg =300 °C
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Boundaries of Geothermal Reservoirs:
Chemical Indicators

Na /1000
Na-K-Mg plot-powerful combination of the :
K-Na & K-Mg geothermometers.

:,_y/"CDO‘ CX/WC‘C + \‘:\4; =S

Full equilibrium line (Txna = Tkwg)
Na-spar, K-spar, K-mica, Qtz & Mg-chlorite /
are in equilibrium with deep water. ) 50

%-Na"

Production wells plot along this line.

Boundaries of Geothermal Reservoirs:
Chemical Indicators

Na /1000

Na-K-Mg plot-powerful combination of the
K-Na & K-Mg geothermometers.

Note the field where Tyy, > Tiug

Hot spring waters usually plot here.

Why?
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Boundaries of Geothermal Reservoirs:
Chemical Indicators

Na /1000
Na-K-Mg plot-powerful combination of the
K-Na & K-Mg geothermometers.

Cold & steam-heated ground waters
plot near the Mg-apex.

:,_y_/"CQO‘ CX/CC - Ve, =S

Boundaries of Geothermal Reservoirs:
Chemical Indicators

Na /1000

Na-K-Mg plot-powerful combination of the

K-Na & K-Mg geothermometers. o"=c. /105

Cold & steam-heated ground waters
plot near the Mg-apex.

Mixing with Mg-rich water
forms linear trend with Mg-rich
water

€y /1000 + ¢, 7100 + \:;; =S
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Boundaries of Geothermal Reservoirs:
Chemical Indicators

Na /1000

Na-K-Mg plot-powerful combination of the
K-Na & K-Mg geothermometers.

Cold & steam-heated ground waters
plot near the Mg-apex.

Mixing with Mg-rich water
forms linear trend with Mg-rich
water (Tyyyg is irrelevant)

Boundaries of Geothermal Reservoirs:
Chemical Indicators

Na /1000

Na-K-Mg plot-powerful combination of the
K-Na & K-Mg geothermometers.

Trends associated with outflow structures
show gradual change in Tyy, & Txug

Example: Miravalles—chloride
springs discharge >10 km from
upflow zone

16



Boundaries of Geothermal Reservoirs:
Chemical Indicators

2800+
STEAM
2000
Enthalpy A+
j/gm Aquifer fluid (265°C)
1000+ o2 steam loss
&8
B‘ . .
*\o‘ Aquifer fluid
1 8 flashed to 100°C
00

000 | 2000
Chloride mg/ kg

Chloride-Enthalpy Plot: Distinguish mixing & boiling trends. Best
applied after one or two wells have been drilled and deep water
data are available.

Boundaries of Geothermal Reservoirs:
Chemical Indicators
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Boundaries of Geothermal Reservoirs:
Chemical Indicators

Waiotapu
1500
Wt-6 Wt-4
1000 PP
éb wi-3 ° o® eV1-7 ® reservoir
E ° o surface
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o]
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° 0 10'00 20‘00
Cl mg/kg
Champagne Pool contains highest CI. Well
Wt-4 has next highest.
Correcting for steam loss, the reservoir
‘; o CJ e composition is computed using steam
gl e ] mokacoma fraction.
.5 ﬂw':z:\al well m dacte dome
Boundaries of Geothermal Reservoirs:
Chemical Indicators
Waiotapu
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O
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dacite dome

o
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T 1
0 1000 2000

Cl mg/kg

Identify boiling trend for parent or reservoir
water composition.

Identify mixing-dilution trend (eyeball)

Identify end-member compositions.
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Boundaries of Geothermal Reservoirs:
Chemical Indicators

Waiotapu
1500-‘
Wt-6' Wt-4
1000 o ®e
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0

T 1
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Cl mg/kg
Interpret fluid flow on map.

Chloride contours in reservoir.

Flow direction. Compare with temperature
profiles.

o5 Geothermal wel

Summary

Determine volume of reservoir with geophysics, extent of
surface thermal activity & hydrological models

Determine temperature of reservoir with aqueous
geothermometers, alteration minerals & temperature
gradient measurements (shallow-deep wells)

Determine heat reserves with stored heat calculation or
more sophisticated reservoir modelling (numerical
simulation)
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