Volatile Solubility: Experimental & Theoretical Considerations

Paul Wallace University of Oregon

Outline

• General considerations & multicomponent vapor saturation

• H₂O, CO₂ and mixed H₂O-CO₂ systems

• Chlorine & sulfur

• Modeling of volatile solubility

Some key things to remember:

- Volatiles occur as dissolved species in silicate melts & also in a separate vapor phase <u>if</u> a melt is vapor saturated.
- In laboratory experiments, melts can be saturated with a nearly pure vapor phase (e.g., H₂O saturated or CO₂ saturated).
- In natural systems, however, multiple volatile components are always present (H₂O, CO₂, S, CI, F, plus noble gases, volatile metals, alkalies, etc.).
- Referring to <u>natural</u> magmas as being H₂O saturated or CO₂ saturated is, strictly speaking, incorrect because the vapor phase always contains other volatiles.
- At pressures of a few kbar and higher, the vapor phase is dense, more like a liquid than a gas. The words 'vapor', 'fluid', or 'gas' are used to describe this phase.

H₂O and CO₂ solubilities measured by experiment

- Solubilities are strongly pressure dependent
- Solubilities do not vary much with composition
- CO₂ has very low solubility compared to H₂O (~30x lower)

Solubilities with more than 1 volatile component present

- In natural systems, melts are saturated with a multicomponent vapor phase
- H₂O and CO₂ contribute the largest partial pressures, so people often focus on these when comparing pressure & volatile solubility

Experimental rhyolitic melts saturated with H₂O-CO₂ vapor

Liu et al. (2005)

Chlorine Solubility

- In this simplified experimental system, basaltic melts are either saturated with H₂O-Cl vapor <u>or</u> molten NaCl with dissolved H₂O (hydrosaline melt)
- Natural basaltic melts typically have <0.25 wt% Cl.

Chlorine in rhyolitic melts

Note: x and y axes have been switched from previous figure

- Cl solubility is <u>much</u> lower in rhyolitic melts compared to basaltic melts
- Some rhyolitic melts (e.g., Augustine volcano) have high enough dissolved CI for the melt to be saturated with hydrosaline melt before eruption

Sulfur Solubility

• Sulfur solubility depends on temperature, pressure, melt composition & oxygen fugacity.

Jugo et al. (2005)

Basalt

QuickTir TIFF (Uncompress are needed to s

ind a ∋compressor s picture.

Trachyandesite

Sulfide saturated

Sulfate saturated

• Changes in f_{O_2} have a strong effect on solubility because S⁶⁺ is much more soluble than S²⁻.

Sulfur Solubility

- S solubility is more complicated because of multiple oxidation states
- Dissolved S occurs as either S²⁻ or S⁶⁺ (S⁴⁺ is negligible)
- Solubility is limited by sat'n with pyrrhotite, Fe-S melt, anhydrite, or CaSO₄ melt
- S in vapor phase occurs primarily as H₂S and SO₂

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Minerals

Basaltic glasses

From Jugo et al. (2005)

• Fortunately we can measure the oxidation state of S in minerals & glasses by measuring the wavelength of S K α radiation by electron microprobe

Effect of oxygen fugacity on S speciation in silicate melts

From Jugo et al. (2005)

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

• A rapid change from mostly S²⁻ to mostly S⁶⁺ occurs over the oxygen fugacity range that is typical for arc magmas

Sulfur solubility – effects of temperature, pressure & composition

S solubility at low oxygen fugacity S²⁻ is the dominant species

Solubility of both S²⁻ and S⁶⁺ are temperature dependent

S solubility in intermediate to silicic melts

- Because of strong temperature dependence of S solubility, low temperature magmas like dacite and rhyolite have very low dissolved S.
- This led earlier workers to erroneously conclude that eruptions of such magma would release little SO₂ to Earth's atmosphere

Pressure Dependence of Sulfide Solubility

QuickTime™ and a decompressor are needed to see this picture.

Mavrogenes & O'Neill (1999)

- Sulfide-saturated melts have a negative pressure dependence for dissolved S
- Most volatiles even sulfate show a positive dependence

QuickTime™ and a decompressor are needed to see this picture.

Modeling the solubility of H₂O-CO₂ in natural melts

Types of models:

- <u>Regular solution</u> calibrated for a single composition (e.g., Silver and Stolper, 1985)
- 2. Empirical
- <u>Compositionally dependent</u> (includes compositionally dependent regular solution model of Papale (1997, 1999) & Papale et al (2006)

I able 3. Volatile solubility models				
Reference	Melt Composition	P - MPa	T - °C	Model Type ¹
H ₂ O solubility				
Behrens & Jantos, 2001	rhyolitic	0.1-200; 500	800	comp
Carroll & Blank, 1997	phonolitic	0.1-191	850	reg sol
Di Matteo et al. 2004	trachytic	20-200	850	comp
Dixon et al. 1995	basaltic	0.1-98	1200	reg sol
Liu et al. 2005	rhyolitic	0.1-500	700-1200	emp
Moore et al. 1998b	various	0.1-300	700-1200	comp
Papale, 1997	various	0.1-1000	>730	reg sol
Yamashita, 1999	rhyolitic	0.1-100	700-1200	reg sol
Zhang, 1999	rhyolitic	0.1-800	500-1350	
CO ₂ solubility				
Dixon et al. 1995	basaltic	0.1-98	1200	reg sol
Dixon et al. 1997	alkali basalt	0.1-500	1200	comp
Papale, 1997	various	0.1-1000	>730	reg sol
Mixed volatile solubility				
Behrens et al. 2004 ²	dacitic-rhyolitic	100-500	850-1250	reg sol
Liu et al. 2005	rhyolitic	0.1-500	700-1200	emp
Newman & Lowenstern, 2002	basalt, rhyolite			various
Papale, 1999	various	<1000	>730	comp reg sol
Papale et al. 2006	various			comp reg sol
Tamic et al. 2001 ³	rhyolitic	75-500	800-1100	emp

¹- Model types include: comp – compositional, accounts for compositional variation, but may include an ad hoc fit equation form; comp reg sol – compositional regular solution model; emp – empirical, generally an ad hoc form of fit equation; reg sol – regular solution model, no compositional dependence; various – uses many different models for its calculations.

² - CO₂ solubility for H₂O-CO₂ bearing silicic compositions.

 3 – H₂O solubility for H₂O–CO₂ bearing rhyolite.

 Warning: do not extrapolate models beyond their calibration range!

Extrapolation beyond calibration range

 Note good fit of Moore model to data up to 200 MPa, and instability when

extrapolated above 300 MPa.

• Extrapolation can lead to significant error

Behrens & Jantos, (2001)

Comparison of VolatileCalc & Papale models

Calculated vapor compositions & vapor saturation pressures for rhyolite (77 wt% SiO₂) and dacite (66 wt% SiO₂) versus experimental values

- Good agreement for both
 VolatileCalc and Papale model for rhyolite.
- Note failure of VolatileCalc to estimate the dacite fluid compositions and pressures (no compositional dependence), while Papale model matches data quite well.

Figures from Moore (2008)

Comparison of Papale model to basaltic experimental data

Model of Papale et al (2006)

 Best model currently available that can account for broad melt compositional variation over magmatic P-T range.

Figure from Moore (2008)

Modeling of sulfur solubility in silicate melts

 For low to intermediate oxygen fugacities (<~NNO), where S²⁻ is the main S species, modeling of solubility is generally based on:

FeO (melt) + 0.5 S_2 (gas) = FeS (liq or solid) + 0.5 O_2 (gas)

• For higher oxygen fugacities, where S⁶⁺ dominates, solubility is based on:

 SO_2 (vapor) + O^{2-} (melt) + 0.5 O_2 (vapor) = SO_4^{2-} (melt)

 At present, the only model (empirical) calibrated for oxidizing conditions Scaillet & Pichavant (2005).

Predicted S solubility in sulfide-saturated rhyolitic melt

QuickTime[™] and a decompressor are needed to see this picture.

Moretti & Baker (2008)

Comparison of sulfide solubility models & experiments

Wallace & Carmichael (1992)

Scaillet & Pichavant (2005)

QuickTime™ and a decompressor are needed to see this picture.

O'Neill & Mavrogenes (2002)

Moretti & Ottonello (2005)

Evans et al. (2008)

Key points to remember:

- Major volatile components are H₂O, CO₂, S, CI, and F
- Magmas are commonly vapor saturated, meaning there is a separate, multicomponent vapor phase consisting of H₂O, CO₂, H₂S, SO₂, CI, F, noble gases, etc.
- Magmas can also be saturated with sulfide and/or sulfate phases (solids or liquids) Sulfur solubility is complex because of multiple valence states.
- In some cases, magma may be saturated with both H₂O-CO₂-Cl vapor and a separate hydrosaline brine phase (mainly consisting of NaCl-H₂O)
- When using solubility models, be careful not to extrapolate outside the range of calibration. Also think carefully about behavior & effect of volatiles <u>not</u> included in the model.

Thermodynamics of Multi-Component Vapor Saturation

• When the sum of the partial pressures of all dissolved volatiles in a silicate melt equals the confining pressure, the melt becomes saturated with a multicomponent vapor phase.

• For each component, *i*, in the vapor phase (H₂O, CO₂, SO₂, H₂S, HCl, ...):

$$f_i = \phi_i X_i P_{Total}$$

where f_i = fugacity, ϕ_i = fugacity coefficient, X_i = mole frac.

Because $X_i P_{Total}$ = the partial pressure of *i*, then:

$$\sum_{i} \frac{f_i}{\phi_i} = P_{Total}$$

if the magma is vapor saturated.