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Generation of intermediate & silicic magma

Melt inclusions — host crystals & inclusion textures
Volatile concentrations in silicic magmas

Vapor saturation & magma chamber configurations
Processes that cause volatile variations

Inferring vapor compositions

Sulfur & chlorine



How are intermediate and silicic magmas formed?

Continental crust has mafic lower crust and more evolved granite-
dominated upper crust

Mantle-derived magmas in subduction zone settings are basalt to
high-Mg andesite in composition

Processes for forming more evolved magma:
» Differentiation of primary mafic magmas by crystallization
» Partial melting of older crustal rocks

« Partial melting of earlier formed cumulates/plutons in the lower
crust



Importance of Mafic Magma

« Crustal magmatic systems are fundamentally basaltic — heat & mass

» Basaltic magma transfers volatiles from mantle to crust

 Mantle volatile sources include upper mantle & subduction-recycled

components
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Edifice

Conceptual representation of a .« <
deep crustal hot zone P
(Annen et al., 2006)

~3-10km Shallow reservoir

» Hydrous basaltic melts intruded into the

lower crust as sills
Dyke feeders
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Strong crystal fractionation signature in rhyolites
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» Data suggest a genetic link between crystal-poor & crystal-rich rhyolites &
|-type granitoids

» But how are viscous silicic melts physically separated from crystals?



Crystal mush model — Bachmann & Bergantz (2004)
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: (a) Crystals kept in suspension by chaotic convection (low Reynolds #) at crystallinities < 45%. P/

: @ (b) At ~45-50% crystals, the interstital melt is rhyolitic and convection comes to a halt, allowing :
melt extraction to begin by a combination of several processes (hindered settling, micro-settling, K
compaction) of the mush.

(c) a rhyolite horizon develops, above a crystalline residue and below an upper solidification
front crystallizing against the cool roof.




An alternative model for formation of intermediate & silicic magma

Entrainment |
at interface
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Upward migration of low-density, residual melt from a crystallizing boundary layer
IS a popular, but problematic, hypothesis for shallow magmatic differentiation

« Difficult to explain old, complexly zoned phenocrysts
* Large silicic magma bodies have sill-like aspect ratios
* Re-entrainment of magma in cap may be relatively rapid



What can we learn from melt inclusions about formation,
crystallization & storage of silicic magmas?

BT96 24H #8 (4x) — 0.1 mm

Quartz-hosted melt inclusions, Bishop Tuff

j Montserrat — photo by B. Voight



Rhyolitic melt inclusions in quartz phenocrysts

Secondary electron images of bipyramidal
quartz from the 1912 eruption of Katmai
showing semi-skeletal growth form & trapping
of inclusions (Lowenstern, 1995)



Rhyolitic melt inclusions — vapor bubbles & quench crystals

QuickTime™ and a
decompressor
are needed to see this picture.

Wallace et al. (2003)

» Melt inclusions in high-silica rhyolities are typically bubble free (a)

» With slower cooling, inclusions develop a darker color (c), bubbles (b), & fine crystals (g, k, I)
 In some cases, bubbles nucleate on daughter crystals (g, h, I)

» Bubbles can also be caused by cracking (decrepitation) of the host



Rhyolitic melt inclusions in plagioclase

» Melt inclusions in plagioclase are
often poorly sealed

QuickTime™ and a
decompressor
are needed to see this picture.

 Vapor bubbles are common

Transmitted light photomicrographs
Crater Lake (Bacon et al., 1992)



Volatiles in melt inclusions from subduction zone rhyolites
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Independent Evidence for Vapor Saturation

Agreement between melt inclusion vapor saturation pressures &
total pressure constrained by experimental phase equilibria

Volcanic SO, and CO, emissions
CO, vs. trace elements in melt inclusions

Fluid inclusions in phenocrysts in volcanic rocks

Plagioclase phenocryst, Guagua
Pichincha, Ecuador Quartz phenocryst, Pinatubo

Photo courtesy of Jake Lowenstern, USGS Pasteris et al. (1994)



Comparison of subduction zone & other rhyolites
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Data sources: Chesner & Newman (1989); Bacon et al. (1992); Lowenstern (1994); Wallace & Gerlach
(1994); Gansecki (1998); Wallace et al. (1999); Schmitt (2001); Wallace (unpubl.)



B|Sh0p Tuff & Long Va”ey Caldera Long Valley Caldera and the Bishop Tuff
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Melt Inclusions from the Bishop Tuff, California
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Cathodoluminescence images of
guartz-hosted melt inclusion




Use of melt inclusions to infer magma body configuration

North South

initial vent site

v

5 km
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no vertical exaggeration

Configuration of pre-caldera magma body, Long Valley Caldera, CA

Wallace et al. (1999)



Late Bishop Tuff preserves evidence of pre-eruption intrusion of hot, CO,-rich
rhyolitic melt into crystal mush in lower part of magma chamber

Qiiaih

Crystal-rich mush Intrusion by hotter rhyolite

: ) Quartz overgrowths trap
Dissolution of quartz

high CO, melt inclusions

Wark et al. (2007)



What processes cause variations in volatile contents?

Decompression — leads mainly to variations in CO,
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Tuff of Pine Grove, Utah (Lowenstern, 1994)



What causes variations in H,O content?
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e Variation of H,O with Ba suggests fractional crystallization control on
Increasing H,O contents



Vapor—Saturated Crystallization
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« Magmatic H,O contents increase during vapor-saturated crystallization
If CO, is present



Loss of CO, to Exsolved Vapor During Closed-System Crystallization
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Loss of CO, to Exsolved Vapor During Vapor-Saturated Crystallization

Melt Inclusions fromthe Bishop Tuff
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What can we infer about volatiles in magmas that are parental to rhyolites?
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 Note that the range of H,O in arc rhyolites is similar to that in arc basalts

 How are the two related?



Effects of fractional crystallization & ascent into upper crust
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« Parental basaltic magmas must have relatively low H,O, and/or

 Lower crustal melting must involve relatively H,O-poor sources



Kos Plateau Tuff — quartz crystals recycled from mush(?)

Closed-system degassing
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e Crystal rich (<40 vol%) rhyolitic tuff; eruptive volume >60 km3

» Geologic evidence suggests magma chamber drawdown of ~1 km during eruption

 Crystals may mostly be derived from mush zone beneath & surrounding chamber



Effects of composition & temperature on S contents of magmas

Shinohara (2008)



Chlorine in Rhyolitic Melt Inclusions
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« Most non-mineralized rhyolites do not have enough CI to be saturated
with concentrated brine (hydrosaline melt)



Decompression-driven versus cooling-driven crystallisation

Blundy & Cashman (2008)
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Inclusion populations record ascent trajectories — time and pressure variations



Decompression-driven crystallisation
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» Decompression-driven crystallization (H,O loss) is much faster than
crystallization driven by cooling



Silicic magma bodies & hydrothermal systems
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Melt Inclusions from Porphyry Copper Deposits
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Student & Bodnar (2004)



Key points to remember:

« Melt inclusions in rhyolitic systems preserve a complex record of magma
crystallization, degassing, mixing and storage

* Melt inclusion H,O & CO, data can be used to infer magma body
configuration and depths of crystallization

* Rhyolitic magmas are typically vapor saturated in the upper crust.
Some may be saturated with a hydrosaline melt (brine) phase

 Dissolved sulfur concentrations are low, but there may be considerable
S as H,S and SO, in the coexisting vapor phase









Inferring Vapor Composition from Melt Inclusion Data
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Exsolved Vapor Composition in Pre-Caldera Magma Body
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Importance of Mafic Magma

» Crustal magmatic systems are fundamentally basaltic

« Basaltic magma transfers volatiles from mantle to crust

peripheral precaldera
basaltic Iavas\ ~ rhyolitic lava
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BASALTIC FLUX FROM ASTHENOSPHERE

“Degassing of basalt crystallizing in
the roots of these systems provides a
flux of He, CO,, S, halogens, and
other components.”

“[Stable isotope] data suggest
that magmatic fluxes of C and S
are dominated by mantle sources”

Hildreth (1981)



Sulfur in Rhyolitic Melt Inclusions

S (ppm)

1000

Temperature (°O)

« Many rhyolitic magmas are sulfide saturated
« Saturation limit of S increases with temperature & oxygen fugacity
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