Melt Inclusions & Volatiles in Silicic Magmatic Systems

Photo by D. Harlow, USGS

Outline

- Generation of intermediate & silicic magma
- Melt inclusions host crystals & inclusion textures
- Volatile concentrations in silicic magmas
- Vapor saturation & magma chamber configurations
- Processes that cause volatile variations
- Inferring vapor compositions
- Sulfur & chlorine

How are intermediate and silicic magmas formed?

- Continental crust has mafic lower crust and more evolved granitedominated upper crust
- Mantle-derived magmas in subduction zone settings are basalt to high-Mg andesite in composition
- Processes for forming more evolved magma:
 - Differentiation of primary mafic magmas by crystallization
 - Partial melting of older crustal rocks
 - Partial melting of earlier formed cumulates/plutons in the lower crust

Importance of Mafic Magma

- Crustal magmatic systems are fundamentally basaltic heat & mass
- Basaltic magma transfers volatiles from mantle to crust
- Mantle volatile sources include upper mantle & subduction-recycled components

Conceptual representation of a deep crustal hot zone (Annen et al., 2006)

- Hydrous basaltic melts intruded into the lower crust as sills
- Heat & H₂O from the crystallizing basalt promote partial melting of the lower crust
- Mixing of residual & crustal melts
- Ascent of H₂O-rich melts into the upper crust
- Degassing & crystallization at shallow depth lead to large increases in viscosity & stalling of magma to form magma chambers

100 %

Basalt

Strong crystal fractionation signature in rhyolites

- Data suggest a genetic link between crystal-poor & crystal-rich rhyolites & I-type granitoids
- But how are viscous silicic melts physically separated from crystals?

Crystal mush model – Bachmann & Bergantz (2004)

front crystallizing against the cool roof.

An alternative model for formation of intermediate & silicic magma

Bachmann & Bergantz (2004)

Upward migration of low-density, residual melt from a crystallizing boundary layer is a popular, but problematic, hypothesis for shallow magmatic differentiation

- Difficult to explain old, complexly zoned phenocrysts
- Large silicic magma bodies have sill-like aspect ratios
- Re-entrainment of magma in cap may be relatively rapid

What can we learn from melt inclusions about formation, crystallization & storage of silicic magmas?

Quartz-hosted melt inclusions, Bishop Tuff

Montserrat – photo by B. Voight

Rhyolitic melt inclusions in quartz phenocrysts

Secondary electron images of bipyramidal quartz from the 1912 eruption of Katmai showing semi-skeletal growth form & trapping of inclusions (Lowenstern, 1995)

Wafers for FTIR & microbeam analysis

Rhyolitic melt inclusions – vapor bubbles & quench crystals

QuickTime™ and a decompressor are needed to see this picture.

Wallace et al. (2003)

- Melt inclusions in high-silica rhyolities are typically bubble free (a)
- With slower cooling, inclusions develop a darker color (c), bubbles (b), & fine crystals (g, k, l)
- In some cases, bubbles nucleate on daughter crystals (g, h, l)
- Bubbles can also be caused by cracking (decrepitation) of the host

Rhyolitic melt inclusions in plagioclase

- Melt inclusions in plagioclase are often poorly sealed
- Vapor bubbles are common

Transmitted light photomicrographs Crater Lake (Bacon et al., 1992) QuickTime™ and a decompressor are needed to see this picture. Volatiles in melt inclusions from subduction zone rhyolites

Wallace (2005)

Independent Evidence for Vapor Saturation

- Agreement between melt inclusion vapor saturation pressures & total pressure constrained by experimental phase equilibria
- Volcanic SO₂ and CO₂ emissions
- CO₂ vs. trace elements in melt inclusions
- Fluid inclusions in phenocrysts in volcanic rocks

Plagioclase phenocryst, Guagua Pichincha, Ecuador

Quartz phenocryst, Pinatubo

Photo courtesy of Jake Lowenstern, USGS

Pasteris et al. (1994)

Comparison of subduction zone & other rhyolites

Data sources: Chesner & Newman (1989); Bacon et al. (1992); Lowenstern (1994); Wallace & Gerlach (1994); Gansecki (1998); Wallace et al. (1999); Schmitt (2001); Wallace (unpubl.)

Bishop Tuff & Long Valley Caldera

Long Valley Caldera and the Bishop Tuff

Melt Inclusions from the Bishop Tuff, California

Wallace et al. (1999)

Use of melt inclusions to infer magma body configuration

no vertical exaggeration

Configuration of pre-caldera magma body, Long Valley Caldera, CA

Wallace et al. (1999)

Late Bishop Tuff preserves evidence of pre-eruption intrusion of hot, CO₂-rich rhyolitic melt into crystal mush in lower part of magma chamber

QUATE State depress accelet setispice

Crystal-rich mush

Intrusion by hotter rhyolite Dissolution of quartz

Quartz overgrowths trap high CO₂ melt inclusions

Wark et al. (2007)

What processes cause variations in volatile contents?

Decompression – leads mainly to variations in CO₂

QuickTime[™] and a decompressor are needed to see this picture.

Tuff of Pine Grove, Utah (Lowenstern, 1994)

What causes variations in H₂O content?

• Variation of H_2O with Ba suggests fractional crystallization control on increasing H_2O contents

Vapor–Saturated Crystallization

 Magmatic H₂O contents increase during vapor-saturated crystallization if CO₂ is present

Loss of CO₂ to Exsolved Vapor During Closed-System Crystallization

CO₂ exsolution during vapor-saturated crystallization

Melt inclusions from clast CHAL-9

Wallace et al. (1995)

Loss of CO₂ to Exsolved Vapor During Vapor-Saturated Crystallization

Wallace et al. (1999)

What can we infer about volatiles in magmas that are parental to rhyolites?

- Note that the range of H₂O in arc rhyolites is similar to that in arc basalts
- How are the two related?

Effects of fractional crystallization & ascent into upper crust

- Parental basaltic magmas must have relatively low H₂O, <u>and/or</u>
- Lower crustal melting must involve relatively H₂O-poor sources

Kos Plateau Tuff – quartz crystals recycled from mush(?)

- Crystal rich (≤40 vol%) rhyolitic tuff; eruptive volume >60 km³
- Geologic evidence suggests magma chamber drawdown of ~1 km during eruption
- Crystals may mostly be derived from mush zone beneath & surrounding chamber

Effects of composition & temperature on S contents of magmas

QuickTime™ and a decompressor are needed to see this picture.

Shinohara (2008)

Chlorine in Rhyolitic Melt Inclusions

 Most non-mineralized rhyolites do not have enough CI to be saturated with concentrated brine (hydrosaline melt)

Decompression-driven versus cooling-driven crystallisation

Inclusion populations record ascent trajectories – time and pressure variations

Decompression-driven crystallisation

 Decompression-driven crystallization (H₂O loss) is much faster than crystallization driven by cooling

Silicic magma bodies & hydrothermal systems

Modified from Hochstein & Browne (2000)

Melt Inclusions from Porphyry Copper Deposits

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

Student & Bodnar (2004)

Key points to remember:

- Melt inclusions in rhyolitic systems preserve a complex record of magma crystallization, degassing, mixing and storage
- Melt inclusion H₂O & CO₂ data can be used to infer magma body configuration and depths of crystallization
- Rhyolitic magmas are typically vapor saturated in the upper crust.
 Some may be saturated with a hydrosaline melt (brine) phase
- Dissolved sulfur concentrations are low, but there may be considerable S as H₂S and SO₂ in the coexisting vapor phase

Inferring Vapor Composition from Melt Inclusion Data

Isobars & isopleths from VolatileCalc (Newman & Lowenstern, 2002)

Exsolved Vapor Composition in Pre-Caldera Magma Body

Wallace et al. (1999)

Importance of Mafic Magma

- Crustal magmatic systems are fundamentally basaltic
- Basaltic magma transfers volatiles from mantle to crust

"Degassing of basalt crystallizing in the roots of these systems provides a flux of He, CO_2 , S, halogens, and other components."

"[Stable isotope] data suggest that magmatic fluxes of C and S are dominated by mantle sources"

Hildreth (1981)

Sulfur in Rhyolitic Melt Inclusions

- Many rhyolitic magmas are sulfide saturated
- Saturation limit of S increases with temperature & oxygen fugacity