
Melt Inclusions & Volatiles in Silicic Magmatic 
Systems
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• Generation of intermediate & silicic magma

• Melt inclusions – host crystals & inclusion textures

• Volatile concentrations in silicic magmas

• Vapor saturation & magma chamber configurations

• Processes that cause volatile variations

• Inferring vapor compositions

• Sulfur & chlorine



How are intermediate and silicic magmas formed?

• Continental crust has mafic lower crust and more evolved granite-
dominated upper crust

• Mantle-derived magmas in subduction zone settings are basalt to 
high-Mg andesite in composition

• Processes for forming more evolved magma:

• Differentiation of primary mafic magmas by crystallization

• Partial melting of older crustal rocks

• Partial melting of earlier formed cumulates/plutons in the lower 
crust
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Importance of Mafic Magma
• Crustal magmatic systems are fundamentally basaltic – heat & mass

• Basaltic magma transfers volatiles from mantle to crust

• Mantle volatile sources include upper mantle & subduction-recycled 
components

Hildreth (1981)



Conceptual representation of a 
deep crustal hot zone
(Annen et al., 2006)

• Hydrous basaltic melts intruded into the
lower crust as sills

• Heat & H2O from the crystallizing basalt
promote partial melting of the lower crust

• Mixing of residual & crustal melts

• Ascent of H2O-rich melts into the upper
crust

• Degassing & crystallization at shallow depth
lead to large increases in viscosity & stalling
of magma to form magma chambers



Strong crystal fractionation signature in rhyolites

Halliday et al. (1991)

• Data suggest a genetic link between crystal-poor & crystal-rich rhyolites &
I-type granitoids

• But how are viscous silicic melts physically separated from crystals?



Crystal mush model – Bachmann & Bergantz (2004)



Upward migration of low-density, residual melt from a crystallizing boundary layer 
is a popular, but problematic, hypothesis for shallow magmatic differentiation

• Difficult to explain old, complexly zoned phenocrysts
• Large silicic magma bodies have sill-like aspect ratios
• Re-entrainment of magma in cap may be relatively rapid

An alternative model for formation of intermediate & silicic magma

Bachmann &
Bergantz (2004)



What can we learn from melt inclusions about formation, 
crystallization & storage of silicic magmas?

Montserrat – photo by B. Voight

Quartz-hosted melt inclusions, Bishop Tuff



Cathodoluminescence images

Wafers for FTIR & microbeam analysis

Rhyolitic melt inclusions in quartz phenocrysts

Secondary electron images of bipyramidal
quartz from the 1912 eruption of Katmai 
showing semi-skeletal growth form & trapping
of inclusions (Lowenstern, 1995)



QuickTime™ and a
 decompressor

are needed to see this picture.

Rhyolitic melt inclusions – vapor bubbles & quench crystals

Wallace et al. (2003)

• Melt inclusions in high-silica rhyolities are typically bubble free (a)
• With slower cooling, inclusions develop a darker color (c), bubbles (b), & fine crystals (g, k, l)
• In some cases, bubbles nucleate on daughter crystals (g, h, l)
• Bubbles can also be caused by cracking (decrepitation) of the host



Rhyolitic melt inclusions in plagioclase

QuickTime™ and a
 decompressor

are needed to see this picture.

Transmitted light photomicrographs
Crater Lake (Bacon et al., 1992)

• Melt inclusions in plagioclase are
often poorly sealed

• Vapor bubbles are common

SEM images of Mount St. Helens
plagioclase (courtesy of J. Blundy)



Volatiles in melt inclusions from subduction zone rhyolites

Wallace (2005)



• Agreement between melt inclusion vapor saturation pressures & 
total pressure constrained by experimental phase equilibria

• Volcanic SO2 and CO2 emissions

• CO2 vs. trace elements in melt inclusions

• Fluid inclusions in phenocrysts in volcanic rocks

Independent Evidence for Vapor Saturation

Pasteris et al. (1994)

Quartz phenocryst, Pinatubo
Plagioclase phenocryst, Guagua 

Pichincha, Ecuador

Photo courtesy of Jake Lowenstern, USGS
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Bishop Tuff & Long Valley Caldera



Cathodoluminescence images of
quartz-hosted melt inclusion

Melt Inclusions from the Bishop Tuff, California

Wallace et al. (1999)

Crystal
poor

Crystal rich



Configuration of pre-caldera magma body, Long Valley Caldera, CA
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Use of melt inclusions to infer magma body configuration

Wallace et al. (1999)



  
 

     

QuickTime™ and a
 decompressor

are needed to see this picture.

  
 

     

Wark et al. (2007)

Late Bishop Tuff preserves evidence of pre-eruption intrusion of hot, CO2-rich 
rhyolitic melt into crystal mush in lower part of magma chamber

Crystal-rich mush Intrusion by hotter rhyolite
Dissolution of quartz

Quartz overgrowths trap
high CO2 melt inclusions



What processes cause variations in volatile contents?

Decompression – leads mainly to variations in CO2

QuickTime™ and a
 decompressor

are needed to see this picture.

Tuff of Pine Grove, Utah (Lowenstern, 1994)
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What causes variations in H2O content?

• Variation of H2O with Ba suggests fractional crystallization control on
increasing H2O contents



• Magmatic H2O contents increase during vapor-saturated crystallization
if CO2 is present
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Exsolution of vapor during closed-system crystallization
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Loss of CO2 to Exsolved Vapor During Closed-System Crystallization
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Wallace et al. (1999)
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What can we infer about volatiles in magmas that are parental to rhyolites?

• Note that the range of H2O in arc rhyolites is similar to that in arc basalts

• How are the two related?



Effects of fractional crystallization & ascent into upper crust

• Parental basaltic magmas must have relatively low H2O, and/or

• Lower crustal melting must involve relatively H2O-poor sources

Wallace (2005)



Kos Plateau Tuff – quartz crystals recycled from mush(?)

Bachmann et al.
(in press)

• Crystal rich (≤40 vol%) rhyolitic tuff; eruptive volume >60 km3

• Geologic evidence suggests magma chamber drawdown of ~1 km during eruption

• Crystals may mostly be derived from mush zone beneath & surrounding chamber



Effects of composition & temperature on S contents of magmas

QuickTime™ and a
 decompressor

are needed to see this picture.

Shinohara (2008)

aa
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Chlorine in Rhyolitic Melt Inclusions

• Most non-mineralized rhyolites do not have enough Cl to be saturated
with concentrated brine (hydrosaline melt)



Decompression-driven versus cooling-driven crystallisation
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Blundy & Cashman (2008)



Decompression-driven crystallisation

• Decompression-driven crystallization (H2O loss) is much faster than 
crystallization driven by cooling
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Modified from Hochstein & Browne (2000)

Silicic magma bodies & hydrothermal systems



QuickTime™ and a
 decompressor

are needed to see this picture.

Student & Bodnar (2004)

Melt Inclusions from Porphyry Copper Deposits

QuickTime™ and a
 decompressor

are needed to see this picture.



Key points to remember:

• Melt inclusions in rhyolitic systems preserve a complex record of magma
crystallization, degassing, mixing and storage

• Melt inclusion H2O & CO2 data can be used to infer magma body
configuration and depths of crystallization

• Rhyolitic magmas are typically vapor saturated in the upper crust.
Some may be saturated with a hydrosaline melt (brine) phase

• Dissolved sulfur concentrations are low, but there may be considerable
S as H2S and SO2 in the coexisting vapor phase
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Isobars & isopleths from VolatileCalc (Newman & Lowenstern, 2002)



0.50.40.30.20.10.0
300

250

200

150

100
early & middle inclusions
local average
late inclusions

X        in vapor

P
re

ss
ur

e 
(M

P
a)

CO2

error

Exsolved Vapor Composition in Pre-Caldera Magma Body

Bishop Tuff

Wallace et al. (1999)



Importance of Mafic Magma

• Crustal magmatic systems are fundamentally basaltic

• Basaltic magma transfers volatiles from mantle to crust

“Degassing of basalt crystallizing in 
the roots of these systems provides a 
flux of He, CO2, S, halogens, and 
other components.”

Hildreth (1981)

“[Stable isotope] data suggest 
that magmatic fluxes of C and S 
are dominated by mantle sources”
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Sulfur in Rhyolitic Melt Inclusions

• Many rhyolitic magmas are sulfide saturated
• Saturation limit of S increases with temperature & oxygen fugacity
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