

We measure major to trace elements and isotope ratios "in anything" in situ, down to mg/t for a 100 µm beam diameter

Instumental considerations What LA-ICP-MS can analyze and what not Data quantification strategies

Materials sciences

Characteristic element concentrations (here: Car windows) determine materials properties (flexibility, breaking resistance, colour,).

The analysis of small splinters may thus provide diagnostic element signatures, and can be used in forensic sciences, too.

Otholit chemistry to track fish migration

Mass spectrometersQuadrupole, Magnetic sector, Multiple collector,
Time of flightFundamental principle of
mass spectrometryThe analytes we measure are always
mass-filtered according to theirMASS / CHARGE RATIO
90Zr++ = 45Sc+
28Si+ = 56Fe++

Mass spectrometers

Quadrupole	Robust, fast scanning, sensitive, low mass resolution (interferences)
Time of flight	"Simultaneous" measurement, moderate sensitivity and backgrounds
Magnetic sector	Highly sensitive, moderate scanning speed, High mass resolution (loss of sensitivity)
Multiple collector	Simultaneous analyte measurements, limited number of isotopes (i.e., mass range), high to moderate sensitivity

First LA-ICP-MS paper in 1985

ANALYST, MAY 1985, VOL. 110 55 1

Solid Sample Introduction by Laser Ablation for Inductively Coupled Plasma Source Mass Spectrometry

Alan L. Gray Department of Chemistry, University of Surrey, Guildford, Surrey GU2 5XH, UK

The results are described of a preliminary study of the mass spectrometry of solid samples using a ruby laser to ablate the sample into an inductively coupled plasma (ICP) source mass spectrometer. Standard rock samples were used, pelletted with a binder into the form of a disc. Some 200 ablation pits could be accommodated on each sample. Laser pulse energies of 0.3-1 J were used in the fixed **Q** mode and the ablated material transferred from the ablation cell into the plasma torch by means of the plasma injector gas flow. The mass spectrometer was used in the fixed ion mode using mean ion current detection to evaluate the reproducibility of successive pulses on major constituents and in the scanning mode at the rate of 10 scanss-1 to produce spectra using mean current detection for major elements and pulse counting detection for traces. Problems were experienced with saturation of the detection system in both the mean current and pulse counting modes owing to the transient nature of the sample pulse from the laser, when attempting to quantify major elements, but except where a major peak was saturated, reasonably uniform sensitivity for most elements across the mass range from 7 to 238 *mlz* was obtained. Isotope ratio measurements were made on lead at 29 pg g-1 and detection limits for the elements examined appear to be 10 ng g-1 or less.

Keywords: Solid samples; inductively coupled plasma source mass spectrometry; laser ablation

Characteristics of LA-ICP-MS

- All the matrix all the time
- Ablation rates not known a priori
- Ablation rates may vary with time
- Sample volume is analyzed
 → heterogeneity ?!?
- Occurrence of large particles
- Elemental analysis between 100 and 0.000'000'05 wt-% concentration possible from one spot

Interactive PARAMETERS in LA-ICP-MS

SAMPLE	LASER	AEROSOL TRANSP.	ICP-MS
Absorptivity of laser light	Wavelength	Ablation and carrier gas	Power, gas flows
Material robustness	Energy	Cell and tube volume	Torch position
	Pulse width	Cell flushing efficiency	lon extraction
	Beam energy profile		lsotopes, dwell time
			Dual detector

Interactive PROCESSES in LA-ICP-MS

ABLATION Responsible for:	TRANSPORT Responsible for:	IONIZATION Responsible for:
Material removal	Aerosol transport	Ion production
Particle production	Aerosol dispersion	Signal intensities
Condensation		Signal stability
Particle agglomeration	Particle agglomeration	Mass bias
Material loss	Material loss	Material loss

Advantages of LA-ICP-MS

- In situ analysis (i.e., texturally controlled)
- Bulk mixtures
- Micro (≥5 µm spot size)
- From major to trace elements and isotopes
- High sensitivity
- Low backgrounds notably in high mass range
- Low limits of detection (LOD)
- "Easy" spectra (→ interferences)
- Chemists claim low sample prep: YES for actually producing numbers No for understanding and interpreting geoscientific data

Laser ablation

- Produces sample aerosol with characteristic particle size and size distribution → shorter wavelength, smaller particles
 - and narrower size distribution (at least for silicates)
- Absorbance of monochromatic light
 → Energy density in excited sample volume:
 irradiance

Ablation energy threshold → "evaporation" (shattening)

Laser-sample interaction

Produce the smallest possible particles by:

- maximizing laser light absorbance
- thus maximizing sample irradiance
- unhindered expansion of ablation plume above spot (He-gas)

Terms in LA-ICP-MS

- Irradiance: Energy density in excited sample volume
- Laser fluence: Total energy per area (W/cm²)
- Laser light pulse duration
- Ablation energy threshold
- Laser light absorbance

Irradiance increases with decreasing pulse duration for a given laser fluence. Irradiance increases with increasing absorbance.

Laser aerosol particles from silicates

с 183 nm, fe

Filtered aerosol of NIST SRM 610 glass after 100 ablation pulses.

Note that with 193nm wavelength, no spherical particles are larger than 200 nm. The pores of the filter are visible in the images as dark areas

Kuhn & Günther, 2005

Different particle size fractions show variable chemical composition at least for some elements

Aerosol transport Should be quantitative but it is not ... Laser ablation particles all chemically identical? unfortunately not (Kuhn & Gunther, 2004)... Mass fraction of jost particles matters

Get as much small particles to the plasma as possible

Aerosol transport efficiency

- The ablation chamber gas flow geometries dominate the aerosol dispersion
- Ablation chamber and transport tube volume has no influence on the amount of aerosol reaching the plasma (but: gas flow geometries)
- The smaller the particles, the "easier" the transport

 → particle size depends on sample irradiation
 (wavelength, matrix,)
- Particle loss must be minimized
 because of variable particle composition

Elemental fractionation Collectively refers to changes in element responses (i.e., element sensitivity ratios) with changing LA-ICP-MS analytical conditions • Occurs at the ablation site, during aerosol transport, and in the ICP 1.8 • Extent of element **SRM 610** 193 nm 213 nm 266 nm 1.6 ²⁹Si/²⁷Al intensity ratio fractionation also 266 nm 1.4 193 nm matrix dependent 213 nm 1.2 Eliminate (minimize) 1.0 element fractionation 0.8 \rightarrow achieve Time / sec matrix independence Guillong et al., 2002

Plasma processes
 ICP temperature and plasma temperature structure higher rf-power → higher plasma temperature lower gas flow rates → higher plasma temperature
 Gas composition affects energy transfer to aerosol (e.g., H₂ promotes ionization)
 Sampling depth (i.e., position of sampler cone tip): Lower depth has higher temperature
 Ionization efficiency depends on ionization energies plasma temperatures particle residence time in the plasma

Limitations on analytical accuracy

- Knowledge of external standards used, including most used SRM 610 and 612 from NIST (see Spandler et al., in review).
 - notably for "uncommon" elements, e.g., Be, CI, Ge, Se, Mo, Sb, Nb, Ta, W, Au,
- Variability in ion production in ICP-MS as a function of elemental fractionation
 - Robust plasma conditions
 - Plasma aerosol load
 - Particle size and size distribution
 - Laser ablation conditions

- -----

Matrix independent analytical conditions can be approached

Matrix independent calibration strategies can provide accurate results

In-situ analysis of "any" materials possible (solid and even liquid)

Н		Ind	Icativ	e limi	ts of d	letect	ion fo	r hom	ogene	eous s	illcat	es and	d fluid	inclu	sions		He
7 Li Be Total element concentrations based on the superscripted mass numbers								n B	¹² C	Ν	0	F	Ne				
²³ Na	25 Mg	 indicates that lower LOD can be reached by DRC 							27 Al	29 Si	C P	³⁴ <u>S</u>	35 <u>CI</u>	Ar			
39 K	42 <u>Ca</u>	45 <u>Sc</u>	49 Ti	⁵¹ V	53 Cr	55 <u>Mn</u>	57 <u>Fe</u>	59 Co	⁶² Ni	65 <u>Cu</u>	66 <u>Zn</u>	69,71 Ga	73 Ge	78 As	77 <u>Se</u>	79 <u>Br</u>	Kr
85 <u>Rb</u>	88 <u>Sr</u>	⁸⁹ Y	⁹⁰ Zr	93 Nb	95 <u>Mo</u>	Тс	99 Ru	¹⁰³ Rh	105,108 Pd	107 Ag	111 <u>Cd</u>	115 In	¹¹⁸ <u>Sn</u>	¹²¹ <u>Sb</u>	¹²⁵ <u>Te</u>	127 [Хе
¹³³ <u>Cs</u>	137 <u>Ba</u>	La- Lu	178 Hf	¹⁸¹ Ta	182 <u>W</u>	¹⁸⁵ Re	189 Os	193 Ir	195 Pt	197 Au	aoa Hg	205 1	208 Pb	209 <u>Bi</u>	Po	At	Rn
Fr	Ra	Ac- Lr	Rf	На													
		139 <u>La</u>	140 <u>Ce</u>	¹⁴¹ <u>Pr</u>	146 <u>Nd</u>	Pm	¹⁴⁷ <u>Sm</u>	151 <u>Eu</u>	¹⁵⁷ <u>Gd</u>	159 <u>Tb</u>	163 Dy	165 <u>Ho</u>	¹⁶⁷ <u>Er</u>	169 <u>Tm</u>	173 <u>Yb</u>	175 <u>Lu</u>]
		Ac	²³² <u>Th</u>	Pa	238 U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr]
		in	40um h	omogen	eous so	lid	25	um inclu	usion		25	n inclu	sion		8.0	n inclusi	ion
Expecte	d LOD		multi - 25 r	-element ecorded	t menu o I masse	st s	'dedic 1-10 n	ated' m ecorded	enu with masses		mul	ti-eleme	nt menu	i of ~ 25	recorde	d mass	e:5
Expects			multi - 25 r >10	-element ecorded 0 μg/g	t menu o 1 masse	st s	'dedic 1-10 n	ated'm ecorded •200 µg/	enu with masses g		25µ mul	ti-eleme	nt menu	i of ~ 25	recorde	d mass 1 wt%	65
Expects			multi - 25 r >10	-element recorded 0 μg/g μg/g	t menu o i masse	s	'dedic 1-10 n	ated'm ecorded •200 µg/ 20 µg/g	enu with masses g		23µ mul >1/	ti-eleme 000 μg/g 00 μg/g	nt menu	ı of ~ 25	recorde >	d mass 1 wt% 000 µg/g	65
Expects	d LOD		multi- - 25 r >10 1	-element recorded 0 μg/g μg/g) ng/g	t menu c i masse	at s	'dedic 1-10 n	ated'm ecorded 200 μg/ 20 μg/g 2 μg/g	enu with masses g		23µ mul >1/ 1/	ti-eleme 000 µg/g 00 µg/g 0 µg/g	nt menu	ı of ~ 25	recorde	d mass 1 wt% 000 µg/g 00 µg/g	e5

Matrix independent analytical conditions can be approached

Matrix independent calibration strategies can provide accurate results

In-situ analysis of heterogeneous samples in the Earth Sciences