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LA-ICP-MS promising, because

• Matrix "independence" possible: 
Standardization "little" problematic (SRM glasses
from NIST). Example: Silicate glass suitable for
silicate, oxide and carbonate minerals (but recall
matrix-related interferences)

• External analytical precision ca. 1% uncertainty, 
due to sequential recording of a flickering signal

• Limits of detection of sub-ng/g attainable

• High sample throughput (~70 spots per day)

• Enormous dynamic range of signal detection:
→ Major to trace elements possible within one shot!

Thomas Pettke

minor to trace element
concentrations and signatures
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A typical granite, there exist more than 80 elements

→ Petrogenetic information, ......

Of these, we can
detect about 60  
in a single
LA-ICP-MS
analysis. 

Go in-situ "on the rocks"

Mineral chemistry in 
rocks and element
distribution between
coexisting minerals

Hundreds of papers ...

Element (re)distribution between minerals
during prograde reactions (magmatic - metamorphic - ...)
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Phlog + grt + cpx
vein

Veins cutting old opx

Textural difference between
pre-Caledonian and Caledonian
majoritic grt

Scambelluri et al. (Geology, 2008)

Key observations:                

1) M1-M2 and M3 
majoritic grt
texturally distinct

2) Phlogopite indicative
of fluid presence

3) K-richterite absent.

4) Multiphase inclusion
can contain diamond 
(Van Roermund et al., 2002)

Ultradeep
metamorphism and 
C-O-H - silicate fluid 
infiltration down to 
6-7 GPa and 
900-1000 °C.

Petrogenetic summary of WGR genesis

M1A

M1B
M2

Scambelluri et al. (Geology, 2008)
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REE compositions of UHP grt and cpx
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M3 grt

Prominent LREE 
enrichment points to 
metasomatism by a 
"fertile" component

Scambelluri et al. (Geology, 2008)

Phl / majoritic grt

Phl is identified as major
UHP carrier of LILE
(mirrored patterns)

Phl/Fluid partition
coefficients calculated
taking the fluid composition
estimated using M3 
majoritic grt and the grt -
fluid partition coefficients of 
Kessel et al. (2005) at 6 GPa

For the given paragenesis
fluid+grt+cpx+opx+phl±carb±spl, 
the following elements can be 
expected to partition into the 
fluid at ca. 200 km depth: 
B, Pb, Th, U, ± LREE?
→ Other thought-to-be 

characteristic fluid elements
are retained in phl!

At UHP, phlogopite 
is a LILE repositoryScambelluri et al. (Geology, 2008)

M3 majoritic grt

M3 cpx

M3 phl
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GrtPolyphase inclusions.
Key problem: Unmix the mixed host
plus inclusion signal into pure inclusion

Trace elements in pyroxene, to unravel the genesis of 
East African rift xenoliths

Kaeser et al., 2006, 2007, 2009
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(Ulianov et al., 2007)

Zircon trace element systematics

Trace element patterns
of accessory minerals
monitor ...

... magma evolution or
metamorphic processes.
Example: zircon

Pettke et al., 2005, Chem Geol
Schaltegger et al., 2005, Chem Geol
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Early magmatic zircon: 
extremely high REE 
contents, no Ce anomaly

Progressive crystalliza-
tion and fluid exsolution:
Decrease in LREE, 
formation of positive Ce-
anomaly; mirrored by
core-rim trends

Hydrothermal zircon
uniform, 
indistinguishable from
late magmatic zircon

(Pettke et al., 2005)
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Reconstruction
of the bulk composition

of the single phase
at the time of formation

Possible because we analyze a sample VOLUME

Heterogeneous phases

Reconstruction of homogeneous cpx composition
at formation conditions, i.e., high P and T !

Piccardo et al. (2004)

Unmixing:
OPx lamellae 
in CPx

Also essential in metallurgy
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High-P experiment

simulates fluid 
equilibrated with rock 

to depths > 300 km

200 µm
Gold capsule

Diamond trap

Eclogite

Problem:
Phase unmixing
(crystallization)
upon quench

G
ol

d 
ca

ps
ul

e

Capsule 
analyzed 

frozen

Supercritical 
liquid in 
diamond trap

Eclogite

Eclogite

Pure 
supercritical 
liquid
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Heterogeneous phase mixture analyzed frozen

Kessel et al., 
Am. Min. (2004); 
Nature & ESPL (2005)

200 µm

D
flu

id
/s
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id

In very much the same way as for major elements, 
the stable residual mineral assemblage determines
which trace elements will be partitioned into the fluids. 
A given mineral commonly represents a sink for a 
suite of trace elements, e.g., garnet for the heavy REE.

Kessel et al., (2005)

Kessel et al., 2004, Am. Min.; 2005, Nature & ESPL
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Transfer rate of elements from the 
subducting crust to the mantle wedge

Supercritical liquids will transfer
- 60-70% Be
- extreme REE fractionation
- high Ba/La
- Th/U excess
- leave rutile in the residue and

strong negative Nb/Ta anomalies

Classical fluids are distinguished by
- Low Be mobility (< 10%)
- U/Th excess
- no REE mobility/fractionation

Classical melts have
- Low Ba/La
- little or no residual rutile and Nb,Ta

anomaly

Supercritical liquids in the following arcs: Vanuatu, Marianas, Tonga-Kermadec

Analysis of Analysis of 
inclusionsinclusions in in 

mineralsminerals
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Analysis of Analysis of 
inclusionsinclusions in in 

mineralsminerals
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Inclusion analysis: 
The analytical challenge

We want to know the
composition (i.e., single
phase) at entrapment time
The entire content
must be analysed
Unmix the mixed
inclusion + host signal
into pure inclusion
High degree of 
matrix mismatch
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Fluid inclusions in quartz: Direct sample
of the metal-transporting agent

Controlled ablation of individual inclusions

Laser drilling of individual inclusions without
affecting neighboring inclusions

Analysis of inclusion
assemblages, obtaining
assemblage compositions
by averaging
individual inclusions



15

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

0 20 40 60 80 100

Na23 Si29 K39 Mn55 Fe57 Cu65
Zn66 As75 Se77 Rb85 Sb121 Pb208

Complex signals

Background InclusionHost 
quartz

Data reduction step-by-step
1) Data are recorded as 

cps, i.e., COUNT RATES
2) Calculate the gross count rates for the 

ENTIRE FI signal
3) Correct for machine background 

→ arrive at bkg-corr cps 
4) Subtract the host mineral contribution from the FI +host 

signal, again all based on bkg-corr cps and normalized 
to an element exclusively present in the host (e.g., Si)

5) Determine for all the elements their respective 
sensitivities for the external standard (i.e., cps/ppm).
Arrive at element sensitivity ratios

6) Use the NaClequiv value from microthermometry to 
determine the relative sensitivity factor, RSF, between 
external standard and sample. Arrive at apparent 
element concentrations in the fluid inclusion 

7) Correct the NaClequiv value for the presence of Cl-
complexed cations other than Na based on the LA-ICP-
MS analytical data, in order to obtain the best estimate 
for the Na concentration in the FI

8) Recalculate the apparent FI element concentrations 
to the TRUE ELEMENT CONCENTRATION by using 
this corrected Na concentration in the fluid inclusion

9) Calculate the Limit Of Detection (=LOD) for each 
individual element in each FI as 
(3stdev bkg)/sensitivity.

10) Filter the true element concentrations calculated 
above with the respective LOD

11) Report the data either as μg/g value or as < μg/g LODH
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et
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l.,
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We thus need:

Matrix INdependent external calibration

INvariable element sensitivity ratios
for standard and sample shots
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Tiny daughter phases in MI, e.g., in fluid bubbles: 
Representative recording of fast, transient signals
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We need compromise conditions:

Fast recording protocols (short dwell times; 
(time per isotope and measurement),

thus "sacrificing" low LOD
(increasing dwell time lowers LOD)

Signal "smearing" is no option, 
because this lowers signal / noise ratio 
→ higher LOD for the analysis of inclusions

LA-ICP-MS
vs. 

PIXE
(Ryan et al., 1995)

the identical synthetic 
inclusions analyzed

prepared 
composition
(C. Ballhaus)
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Accuracy

Heinrich et al., 2003, GCA

Na cannot be analyzed 
by  PIXE
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LOD for Au in 
25μm fluid inclusion: 

< 0.02 ppm30 µm

Pettke, 2008

For inclusion analysis, consider

Enough laser energy density on sample
Homogenized energy distribution
(allow for controlled inclusion ablation)
Laser ablation in helium
Robust plasma conditions, 
to maximize MATRIX INDEPENDENCE
Low and constant gas backgrounds (LOD)
Representative recording of transient signals
Proper analyte isotope selection (interferences)

Pettke, 2006, 2008
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Melt inclusions,
exposed

Ablation pit

50 µm 

Cpx host

Perfect laser beam positioning required

→ visual optics of LA-ICP-MS system

Signal variability in heterogeneous MI
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Laser light

Halter et al (2002)
Chem. Geol.

Laser light

Halter et al (2002)
Chem. Geol.
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Laser light

Halter et al (2002)
Chem. Geol.

Laser light

Second Second constraintconstraint
necessarynecessary::
""internalinternal standardstandard""

Halter et al (2002)
Chem. Geol.

Ci
INCL known

for one element: 

X defined
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Second constraint:
Concentration of 
one element or
an element ratio
at MI entrapment
known independently
to determine
MI-analysis specific
mass ratio, 
e.g., whole rock data.
This mass ratio is then
used to calculate the
element concentrations
of this MI

Halter et al. (2002)
Pettke, (2006)

?

Cogenetic assemblage 
of  crystallised MI in 
plagioclase

Uncertainties and
detection limits
depend on  relative 
concentrations, X , 
and size of inclusion
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Effect of "wrong" mass ratio X

Pettke et al. (2004) Lithos

MI homogenization in the lab as required
for EPMA and SIMS analysis:
Exactly the same effects caused by
insufficient or excessive host remelting!

Host: olivine

Accurate LA-ICP-MS MI data

Pettke et al. (2004)
Lithos
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Analytical uncertainty and LOD's depend on 
inclusion size, ablation quality and 

element concentrations in inclusion and host

Co-existing clinopyroxene & plagioclase
host compositionally identical MI
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Composition of silicate melt inclusions
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Plagioclase

Magnetite

Amphibole

Clinopyroxene

Microcrystalline
groundmass

Andesite
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Melt inclusions in
various host minerals

Bulk rock compositionBulk rock composition

Melt inclusions of vastly different compositions
occur in different minerals AND 
in different crystals of the same mineral:
Disequilibrium conditions

MAGMA MIXING

H
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Mineral/melt partitioning data calculated using the SMI and host mineral 
compositions as a function of effective ionic radius. Lines represent the fit 
obtained by the theoretical model of Blundy and Wood (1994).

Zajacz and Halter, 2007
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10 μm

Silicate 
melt inclusions

Sulphide
melt

inclusions
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Transmitted and reflected light

Amphibole

Halter et al., 2002b, Science
Halter et al., 2005, Min. Dep.
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Sulfide Analysis

Matrix independence
MAXIMIZED !
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Au  ~ 1  μg/gCu/Au  ~ 10´000

(65Cu40Ar)+ interference on 105Pd+
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Mafic Mafic primaryprimary meltmelt::
AmphiboleAmphibole
PPH2OH2O > 350> 350°°C; T ~ 1000C; T ~ 1000°°CC
> 6.5 > 6.5 wt.wt.--%% H2OH2O

Mixing:Mixing:
Amphibole Amphibole 
(plagioclase)(plagioclase)
PPH2O H2O > 200 > 200 MPaMPa
> 5.5 wt.> 5.5 wt.--% H% H22OO
T ~ 950T ~ 950°°CC

SilicaSilica--rich rich 
primary melt:primary melt:
PlagioclasePlagioclase

DegassedDegassed

Ore
FluidsFluids

Magmatic-hydrothermal activity
atop subduktion zones
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Mineral inclusions are all the same
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Hydrothermal zircon

30 μm

Bulk mineral inclusion
analysis in any host mineral

hosted in freegrown hydrothermal quartz

Fluid / melt element 
distribution 
coefficients 
measured from co-
existing silicate melt 
- aqueous fluid 
inclusion 
assemblages

Zajacz et al., 2008, GCA
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Mt. St. Helens 
18. Mai 1980

Bingham
porphyry-Cu-
Au deposit
formed beneath
something like
this - but how?
see Landtwing et 
al. (2005)
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Late quartz
with

Cu-Fe 
sulfides

Early barren quartz
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Landtwing et al., 2005, EPSL
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Brine inclusions Q1  | Q2 Vapor    V1  |   V2 

Bingham porphyry-Cu-Au deposit

Entrapment time
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Temperature   Thomogenisation (°C) 
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Landtwing et al., EPSL (2005)

cooling interval of 420-350°C, 

Chalcopyrite + bornite precipitation
during quartz dissolution:

Ore deposition in narrow 
cooling interval where 
Cu-Fe-sulfide solubility is normal 
while quartz solubility is retrograde

Selected applications: Questa Mo-deposit
• Two petrographic molybdenite-

forming stages sourced by
progressively evolved magmas as 
monitored by fluid Cs contents

• Molybdenite precipitation in 
response to fluid cooling

Klemm et al. (2008) Min Dep
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Selected applications: Mole Granite Sn-W-deposit

Audetat et al. (1998) 
Science 279, 2091-2094

Cassiterite
precipitation
recorded in 
progressively
entrapped fluid
inclusion
assemblages, 
interpreted to 
monitor
admixture of 
ground-water
to the
ore-forming fluid.

In-situ isotopic analysis by LA-ICP-MS:

Age dating

Source tracing
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LA-MC-ICP-MS U-Pb dating
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Ages obtained on 
titanite standard
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NOTE:
All these data were 
obtained by using 
matrix-matched 
external 
standardization !!!

Pb isotopes in fluid
inclusions: Motivation

Fluids effect significant and fast mass 
and heat transfer in the Earth's interior: 

→ Fluid origin and migration paths?

Samples of ancient fluids are preserved as 
inclusions in minerals

Pb isotopes are an excellent tracer of 
aqueous fluid-based geological processes
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Bulk crush leach Pb isotope approach: PhD

TIMS

Multiple 
generations of 
fluid inclusions: 
→ MIXTURES ...

Feasibility ?
Brine inclusions often contain 5000 ppm Pb

Element concentrations of individual fluid inclusions
are accurately quantified by LA-ICP-MS

Enough sample?

Analytical
precision?

Are Pb isotopic
measurements
accurate? 

Which ICP-MS?

Transient signal
acquisition
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The reference materials
SRM610 from NIST: 
426 ppm Pb of known isotopic composition

Synthetic fluid inclusions (700 °C, 180 MPa, 144h)
- (Na,K,Pb)Cl - (Na,K,Tl,Pb)Cl

Concentrations:

N: 11.7 wt-% NaCl
N: 6.2 wt-% KCl
M: 5000 µg/g Pb  (SRM 981)

N: 10.5 wt-% NaCl
N: 5.9 wt-% KCl
M: 4200 µg/g Pb (SRM 981)
M: 1600 µg/g Tl (SRM 997)

100 μm

100 μm

Fluid inclusion signals
Pb-Tl_FI-2_June07-05
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Accuracy on fluid inclusion standards

Average size of 
isometric fluid
inclusions is 25 µm;
SRM981 reference 
values from 
Baker et al. (2004)

100 µm

208Pb/206Pb PbTl fluid inclusions with Tl aspirated
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207Pb/204Pb PbTl fluid inclusions with Tl aspirated
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NU-1700 data

Rosia Poieni, porphyry-type Cu-Au deposit

Inclusion to 
inclusion (~40 µm)
reproducibility
much better than
for the standard
inclusions
(larger size, higher
Pb concentration)
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The result

Ore-forming fluid
Uncertainty 2 SD, N=11

Marcoux et al. (2002)

PhD Harris, 2007; in prep.

Develop an idea for analysis.
Define the strategy and do it.

It will likely be successful, 
at least partially.

Thanks!




