Heat (& Mass) Transfer

•conceptual models of heat transfer

•temperature-pressure gradients

·large scale controls on fluid movement

•distribution of vapor-saturated conditions

•fluid flow paths

surface manifestations

Cyclic:

- · water circulates advecting thermal energy
- open system
- flow driven by magmas, gravity, structures
- hydro-pressured (hydrostatic gradient)

Storage:

- water locked in rocks (e.g. pore space)
- commonly hosted in sedimentary rocks
- pressures exceed hydrostatic, up to lithostatic in some cases
- flow occurs when the rock formation is intersected by drill hole
- geo-pressured

Hot Dry Rock-Enhanced Geothermal Systems (EGS):

- thermal energy locked in rocks lacking fracture networks or interconnected pore space
- permeability structure is engineered (hydrofracturing)
- thermal energy transferred by circulating fluid down one well and up a second well.
- High risk...little success.

Stored Heat (ΣQ) ΔQ_R heat stored in rock (J/m³) ΔQ_F heat stored in pore fluid (J/m³) $\Delta Q_R = (1 - \Phi) \rho_P c_R [T_z - T_{z0}]$ $\Delta Q_F = (\Phi) \rho_L s_L [h_z - h_{z0}]$ $\Sigma Q = \Delta Q_R + \Delta Q_F$ Note sources of uncertainty: reservoir volume (diffuse vs sharp boundary) reservoir temperature

Estimating Power Outputs

2. Additional thermal energy supplied by cooling reservoir rock

Consider temperature drop (e.g. 10°C) Determine total energy released/volume Compute equivalent mass of extra fluid at T- 10°C Compute power output over project life

The first method gives a conservative value. Recovery factor includes natural recharge, permeability structure, and fluid characteristics.

NB. Numerical models required for financing.

photo: Jeff Hedenquist

Heat Balance

 $H_{res} = H_{l}(y) + H_{v}(x)$

 H_{res} = reservoir enthalpy liquid H_{l} = enthalpy liquid at flash H_v = enthalpy vapor at flash

y = liquid fraction x = steam fraction

adiabatic heat transfer

Heat loss: Surface Manifestations		
The more thermal input at the base of the convection cell, the more fluid upflow, the more heat discharged at the surface, and the more surface manifestations.		
Diffusive	warm ground steaming ground hot pools (evaporation) mud pools (evaporation)	
Direct & Continuous	warm-hot springs (liquid discharge) fumaroles (audible steam discharge)	
Intermittent	geysers	
Catastrophic	hydrothermal eruptions	
Concealed	seepage	

Heat loss: Surface Manifestations			
Example—flowing hot spring			
$Q = m (H-H_0) \approx m cp (t - t_0)$		Q = heat flow	
m = mass flow rate (kg/s) = V (ρ)		V = volume ρ = density	
H = enthalpy liquid	H_0 = enthalpy at ambient t° C		
cp = specific heat capacity (4.2 kJ/kg)			
T = temperature liquid	T ₀ = ambient temperature		