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STABLE ISOTOPE THEORY: EQUILIBRIUM 
FRACTIONATION 

INTRODUCTION 
 Stable isotope geochemistry is concerned with variations of the isotopic compositions of light ele-
ments arising from chemical fractionations rather than nuclear processes.  The elements most com-
monly studied are H, Li, B, C, N, O, Si, S and Cl. Of these, O, H, C, and S are by far the most important.  
These elements have several common characteristics: 
 •  They have low atomic mass. 
 •  The relative mass difference between the isotopes is large. 
 •  They form bonds with a high degree of covalent character. 
 • The elements exist in more than one oxidation state (C, N, and S), form a wide variety of com-
pounds (O), or are important constituents of naturally-occurring solids and fluids. 
 •  The abundance of the rare isotope is sufficiently high (generally at least tenths of a percent) to fa-
cilitate analysis. 
 It was once thought that elements not meeting these criteria would not show measurable variation in 
isotopic composition.  However, as new techniques offering greater sensitivity and higher precision 
have become available (particularly use of the MC-ICP-MS), geochemists have begun to explore iso-
topic variations of metals such as Mg, Ca, Ti, Cr, Fe, Zn, Cu, Ge, Mo, Ti, and Tl. The isotopic variations 
observed in these metals have generally been quite small, except in materials affected or produced by 
biologically processes, where fractionations are a little larger, but still smaller than the former group of 
elements. Nevertheless, some geologically useful information has been obtained from isotopic study of 
these metals and exploration of their isotope geochemistry continues. 
 Stable isotopes can be applied to a variety of problems.  One of the most common is geothermometry. 
This use derives from the extent of isotopic fractionation varying inversely with temperature: fraction-
ations are large at low temperature and small at high temperature. Another application is process iden-
tification.  For instance, plants that produce ‘C4’ hydrocarbon chains (that is, hydrocarbon chains 4 car-
bons long) as their primary photosynthetic products fractionate carbon differently than to plants that 
produce ‘C3’ chains.  This fractionation is retained up the food chain.  This allows us to draw some in-
ferences about the diet of fossil mammals from the stable isotope ratios in their bones.  Sometimes sta-
ble isotopes are used as 'tracers' much as radiogenic isotopes are.  So, for example, we can use oxygen 
isotope ratios in igneous rocks to determine whether they have assimilated crustal material. 

NOTATION AND DEFINITIONS 
The δ  Notation 

 Variations in stable isotope ratios are typically in the parts per thousand range and hence are gen-
erally reported as permil variations, δ, from some standard.  Oxygen isotope fractionations are generally 
reported in permil deviations from SMOW (standard mean ocean water): 

  δ18O =
(18O/16O)sam −(18O/16O)SMOW

(18O/16O)SMOW
 
 

 
 
× 103  19.1 

The same formula is used to report other stable isotope ratios.  Hydrogen isotope ratios, δD, are re-
ported relative to SMOW, carbon isotope ratios relative to Pee Dee Belemite carbonate (PDB), nitrogen 
isotope ratios relative to atmospheric nitrogen, and sulfur isotope ratios relative to troilite in the Can-
yon Diablo iron meteorite.  Cl isotopes are also reported relative to seawater; Li and B are reported rela-
tive to NBS (which has now become NIST: National Institute of Standards and Technology) standards.  
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Unfortunately, a dual standard has developed for reporting O isotopes.  Isotope ratios of carbonates are 
reported relative to the PDB carbonate standard.  This value is related to SMOW by: 
  δ18OPDB = 1.03086δ18OSMOW + 30.86 19.2 
Table 19.1 lists the values for standards used in stable isotope analysis. 

The Fractionation Factor 
 An important parameter in stable isotope geochemistry is the fractionation factor, α.  It is defined as: 

  

€ 

αA−B ≡
RA

RB
 19.3 

where RA and RB are the isotope ratios of two phases, A and B. 
 The fractionation of isotopes between two phases is often also reported as ∆A-B = δA – δB.   The rela-
tionship between ∆ and α is:  
  ∆ ≈ (α - 1)103             or         ∆ ≈ 103 ln α  19.4 
We derive it as follows.  Rearranging equ. 19.1, we have: 
  RA = (δA + 103)RSTD/103 19.5 
where R denotes an isotope ratio.  Thus α may be expressed as: 

  

€ 

α =
(δΑ +103)RSTD /10

3

(δΒ +103)RSTD /10
3 =

(δΑ +103)
(δΒ +103)

 19.6 

Subtracting 1 from each side and rearranging, and since δ is generally << 103, we obtain: 

  

€ 

α −1=
(δΑ − δΒ )
(δΒ +103)

≅
(δΑ − δΒ )
103

= Δ ×10−3  19.7  

The second equation in 19.4 results from the approximation that for x ≈ 1, ln x ≈ 1 – x.  As we will see, α 
is related to the equilibrium constant of thermodynamics by 
  αA-B = (K/K∞)1/n 19.8 
where n is the number of atoms exchanged, K∞ is the equilibrium constant at infinite temperature, and 
K is the equilibrium constant is written in the usual way (except that concentrations are used rather 
than activities because the ratios of the activity coefficients are equal to 1, i.e., there are no isotopic ef-
fects on the activity coefficient). 

 THEORY OF ISOTOPIC FRACTIONATIONS 
 Isotope fractionation can originate from both kinetic effects and equilibrium effects.  The former might 
be intuitively expected (since for example, we can readily understand that a lighter isotope will diffuse 

Table 19.1.  Isotope Ratios of Stable Isotopes 
Element Notation Ratio Standard Absolute Ratio 
Hydrogen δD D/H (2H/1H) SMOW 1.557 × 10-4 
Lithium δ6Li 6li/7Li NBS L-SVEC 0.08306 
Boron δ11B 11B/10B NBS 951 4.044 
Carbon δ13C 13C/12C PDB 1.122 × 10-2 
Nitrogen δ15N 15N/14N atmosphere 3.613 × 10-3 
Oxygen δ18O 18O/16O SMOW, PDB 2.0052 × 10-3 
  δ17O 17O/16O SMOW 3.76 × 10-4 
Chlorine δ37Cl 37Cl/35Cl seawater ~0.31978 
Sulfur δ34S 34S/32S CDT 4.43 × 10-2 
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faster than a heavier one), but the latter may be somewhat surprising.  After all, we have been taught 
that oxygen is oxygen, and its properties are dictated by its electronic structure.  In the following sec-
tions, we will see that quantum mechanics predicts that mass affects the strength of chemical bonds and 
the vibrational, rotational, and translational motions of atoms.  These quantum mechanical effects pre-
dict the small differences in the chemical properties of isotopes quite accurately.  We shall now consider 
the manner in which isotopic fractionations arise. 
 The electronic structures of all isotopes of an element are identical and since the electronic structure 
governs chemical properties, these properties are generally identical as well.  Nevertheless, small dif-
ferences in chemical behavior arise when this behavior depends on the frequencies of atomic and mo-
lecular vibrations. The energy of a molecule can be described in terms of several components: elec-
tronic, nuclear spin, translational, rotational and vibrational.  The first two terms are negligible and 
play no role in isotopic fractionations. The last three terms are the modes of motion available to a mole-
cule and are the cause of differences in chemical behavior among isotopes of the same element.  Of the 
three, vibration motion plays the most important role in isotopic fractionations.  Translational and rota-
tional motion can be described by classical mechanics, but an adequate description of vibrational mo-
tions of atoms in a lattice or molecule requires the application of quantum theory.  As we shall see, tem-
perature-dependent equilibrium isotope fractionations arise from quantum mechanical effects on vibrational mo-
tions.  These effects are, as one might expect, generally small.  For example, the equilibrium constant for 

the reaction: 

  

1
2
C16O2 + H2

18O =

1
2
C18O2 + H2

16O
 

is only about 1.04 at 25°C. 
  Figure 19.1 is a plot of the 
potential energy of a diatomic 
molecule as a function of dis-
tance between the two atoms.  
This plot looks broadly simi-
lar to one we might construct 
for two masses connected by a 
spring. When the distance 
between masses is small, the 
spring is compressed, and the 
potential energy of the system 
correspondingly high.  At 
great distances between the 
masses, the spring is stretched 
and the energy of the system 
also high.  At some in-
termediate distance, there is 
no stress on the spring, and 
the potential energy of the 
system is at a minimum (en-
ergy would be nevertheless be 
conserved because kinetic en-
ergy is at a maximum when 
potential energy is at a mini-

 
Figure 19.1. Energy-level diagram for the hydrogen atom.  Fundamental 
vibration frequencies are 4405 cm-1 for H2, 3817 cm-1 for HD, and 3119 
cm-1 for D2.  The zero-point energy of H2 is greater than that for HD 
which is greater than that for D2.  From O'Neil (1986). 
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mum).  The diatomic oscillator, for example consisting of a Na and a Cl ion, works in an analogous 
way.  At small interatomic distances, the electron clouds repel each other (the atoms are compressed); 
at large distances, the atoms are attracted to each other by the net charge on atoms.  At intermediate 
distances, the potential energy is at a minimum.  The energy and the distance over which the atoms vi-
brate are related to temperature. 
 In quantum theory, a diatomic oscillator cannot assume just any energy: only discrete energy levels 
may be occupied.  The permissible energy levels, as we shall see, depend on mass.  Quantum theory 
also tells us that even at absolute 0 the atoms will vibrate at a ground frequency ν0.  The system will 
have energy of 1/2hν0, where h is Planck's constant.  This energy level is called the Zero Point Energy 
(ZPE).  Its energy depends the electronic arrangements, the nuclear charges, and the positions of the at-
oms in the molecule or lattice, all of which will be identical for isotopes of the same element. However, 
the energy also depends on the masses of the atoms involved, and thus will be different for different for 
isotopes.  The vibrational energy level for a given quantum number will be lower for a bond involving a heavier 
isotope of an element, as suggested in Figure 19.1.  Thus bonds involving heavier isotopes will be stronger.  If a 
system consists of two possible atomic sites with different bond energies and two isotopes of an ele-
ment available to fill those sites, the energy of the system is minimized when the heavy isotope occupies the site 
with the stronger bond.  Thus at equilibrium, the heavy isotope will tend to occupy the site with the 
stronger bond.  This, in brief, is why equilibrium fractionations arise.  Because bonds involving lighter 
isotopes are weaker and more readily broken, the lighter isotopes of an element participate more read-
ily in a given chemical reaction.  If the reaction fails to go to completion, which is often the case, this 
tendency gives rise to kinetic fractionations of isotopes.  There are other causes of kinetic fractionations 
as well, and will consider them in due course.  We will now consider in greater detail the basis for equi-
librium fractionation, and see that they can be predicted from statistical mechanics. 

Equilibrium Fractionations  
 Urey (1947) and Bigeleisen and Mayer (1947) pointed out the possibility of calculating the equilib-
rium constant for isotopic exchange reactions from the partition function, q, of statistical mechanics.  In 
the following discussion, bear in mind that quantum theory states that only discrete energies are avail-
able to an atom or molecule. 
 At equilibrium, the ratio of the number of molecules having internal energy Ei to the number having 
the zero point energy E0 is: 

  

€ 

ni
n0

= gie
−Ei / kT  19.9 

where n0 is the number of molecules with ground-state or zero point energy, ni is the number of mole-
cules with energy Ei and k is Boltzmann's constant, T is the thermodynamic, or absolute, temperature, 
and g is a statistical weight factor used to account for possible degenerate energy levels* (g is equal to 
the number of states having energy Ei).  The average energy (per molecule) in a system is given by the 
Boltzmann distribution function, which is just the sum of the energy of all possible states times the num-
ber of particles in that state divided by the number of particles in those states: 

  E =
niEi

i
∑

ni
i
∑

=
giEie

−Ei /kT∑

gie
−Ei /kT∑

 19.10 

The partition function, q, is the denominator of this equation: 

                                                
* The energy level is said to be 'degenerate' if two or more states have the same energy level Ei. 
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€ 

q = gie
−Ei / kT∑  19.11 

Substituting 19.11 into 19.10, we can rewrite 19.10 in terms of the partial derivatives of q: 

  

€ 

E = kT 2 ∂ lnq
∂T

 19.12 

 We will return to these equations shortly, but first let’s see how all this relates to some parameters 
that are more familiar from thermodynamics and physical chemistry.  It can also be shown (but we 
won't) from statistical mechanics that entropy† is related to energy and q by 

  

€ 

S =
U
T
R lnq 19.13 

Where R is the ideal gas constant and U is the internal energy of a system. We can rearrange this as: 
  

€ 

U −TS = −R lnq 19.14 
And for the entropy and energy changes of a reaction, we have: 

  ΔU − TΔS = −R ln qn
ξ∏  19.15 

where ξ in this case is the stoichiometric coefficient.  In this notation, the stoichiometric coefficient is 
taken to have a negative sign for reactants (left side of reaction) and a positive sign for products (right 
side of reaction). The left hand side of this equation is simply the Gibbs Free Energy change of reaction 
under conditions of constant volume (as would be the case for an isotopic exchange reaction), so that 

  ΔG = −R ln qn
ξ∏  19.16 

 The Gibbs Free Energy change is related to the equilibrium constant, K, by: 
  

€ 

ΔG = −RT lnK  19.17 
so the equilibrium constant for an isotope exchange reaction is related to the partition function as: 

  K = qn
ξ∏  19.18 

For example, in the reaction involving exchange of 18O between H2O and CO2, the equilibrium constant 
is simply: 

  K =
q
C16O2

1/2 q
H2

18O

q
C18O2

1/2 q
H2

16O

 19.19 

 The point of all this is simply that: the usefulness of the partition function is that it can be calculated from 
quantum mechanics, and from it we can calculate equilibrium fractionations of isotopes.  
 The partition function can be written as: 
  

€ 

qtotal = qtrqvibqrot  19.20 
i.e., the product of the translational, rotational and vibrational partition functions.  It is convenient to 
treat these three modes of motion separately.  Let's now do so.   

                                                
† Entropy is defined in the second law of thermodynamics, which states: 

  

€ 

dS =
dQrev

T
 

where Qrev is heat gained by a system in a reversible process.  Entropy can be thought of as a measure of the random-
ness of a system. 
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Translational Partition Function 
 Writing a version of equation 19.11 for translational energy, qtrans is expressed as: 

  

€ 

qtrans = gtr,ie
−Etr ,i / kT

i
∑  19.21 

Now all that remains is to find and expression for translational energy and a way to do the summation. 
At temperatures above about 2 K, translational energy levels are so closely spaced that they essentially 
form a continuum, so we can use a classical mechanical approach to calculating the energy.  The quan-
tum translational energy of a particle in a cubical box is given by: 

  

€ 

Etrans =
n2h2

8md 2
 19.22 

where n is the quantum energy level, h is Planck’s constant, d is the length of the side of the cube, and m 
is mass of the particle.  Substituting 19.22 into 19.21 and integrating: 

  

€ 

qtrans = e−n
2h 2 8md 2kT dn

0

∞

∫ =
2πmkT( )1/ 2

h
d  19.23 

gives an expression for qtrans for each dimension.  The total three-dimensional translational partition 
function is then: 

  

€ 

qtrans =
2πmkT( )3/2

h
V  19.24 

where V is volume and is equal to d3.  (It may seem odd that the volume should enter into the calcula-
tion, but since it is the ratio of partition functions that are important in equations such as 19.19, all terms 
in 19.24 except mass will eventually cancel.) If translation motion were the only component of energy, 
the equilibrium constant for exchange of isotopes would be simply the ratio of the molecular weights 
raised to the 3/2 power.  If we define the translational contribution to the equilibrium constant as Ktr as: 

  

€ 

Ktr = qtr
ξ∏  19.25 

Ktr reduces to the product of the molecular masses raised to the stoichiometric coefficient times three-
halves: 

  

€ 

Ktr = Mi
ξi 3/2

i
∏  19.26 

where we have replace m with M, the molecular mass.  Thus the translational contribution to the parti-
tion function and fractionation factor is independent of temperature. 

Rotational Partition Function 
 The allowed quantum rotational energy states are: 

  Erot =
j( j +1)h2

8π 2I
 19.27 

where j is the rotational quantum number and I is the moment of inertia.  For a diatomic molecule, I= 
µd2, where d is the bond length, mi is the atomic mass of atom i, and µ is reduced mass: 

  

€ 

µ =
m1m2

m1 + m2

 19.28 
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A diatomic molecule will have two rotational axes, one along the bond axis, the other perpendicular to 
it.  Hence in a diatomic molecule, j quanta of energy may be distributed 2j+1 ways because there are 
two possibilities for every value of j except j = 0, for which there is only one possible way.  The statis-
tical weight factor is therefore 2j + 1.  Hence: 

  

€ 

qrot = (2 j +1)e j( j+1)h
2 /8π 2 Ii kT

i
∑  19.29 

Again the spacing between energy levels is relatively small (except for hydrogen) and 19.29 may be 
evaluated as an integral.  For a diatomic molecule, the partition function for rotation is given by: 

  

€ 

qrot =
8π 2IkT
σh2

 19.30 

where σ is a symmetry factor.  It is 1 for a heteronuclear diatomic molecule (such as CO or 18O16O), and 
2 for a homonuclear diatomic molecule such as 16O2.  Equ. 19.30 also holds for linear polyatomic mole-
cules with the symmetry factor equal to 2 if the molecule has a plane of symmetry (e.g., CO2) and 1 if it 
does not.  For non-linear polyatomic molecules, the partition function is given by: 

  

€ 

qrot =
8π 2(8π 2ABC)1/ 2(kT)3 / 2

σh3
 19.31 

where A, B, and C are the principal moments of inertia of the molecule and σ is equal to the number of 
equivalent ways of orienting the molecule in space (e.g., 2 for H2O, 12 for CH4).  In calculating the rota-
tional contribution to the partition function and equilibrium constant, all terms cancel except for mo-
ment of inertia and the symmetry factor, and the contribution of rotational motion to isotope fractiona-
tion is also independent of temperature.  For diatomic molecules we may write: 

  Krot =
Ii
σ i








ξ

i
∏  19.32 

In general, bond lengths are also independent of the isotope involved, so the moment of inertia term 
may be replaced by the reduced masses. 

Vibrational Partition Function 
 We will simplify the calculation of the vibrational partition function by treating the diatomic mole-
cule as a harmonic oscillator (as Fig. 19.1 suggests, this is a good approximation in most cases).  In this 
case the quantum energy levels are given by: 

  

€ 

Evib = n +
1
2

 

 
 

 

 
 hν  19.33 

where n is the vibrational quantum number and ν is vibrational frequency.  Unlike rotational and vibra-
tional energies, the spacing between vibrational energy levels is large at geologic temperatures, so the 
partition function cannot be integrated.  Instead, it must be summed over all available energy levels.  
Fortunately, the sum has a simple form: for diatomic molecules the summation is simply equal to: 

  

€ 

qvib =
e−hν /2kT

1− e−hν /2kT
 19.34 

For molecules consisting of more than two atoms, there are many vibrational motions possible.  In this 
case, the vibrational partition function is the product of the partition functions for each mode of motion, 
with the individual partition functions given by 19.34.  For a non-linear polyatomic molecule consisting 
of i atoms and the product is performed over all vibrational modes, , the partition function is given by: 
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€ 

qvib =
e−hν  /2kT

1− e−hν  /2kT


3i−6

∏  19.35 

(There are 3i-5 modes of motion for linear polyatomic molecules, hence the product is in 19.35 carried 
out to 3i-5 for such.) 
 At room temperature, the exponential term in the denominator approximates to 0, and the denomina-
tor therefore approximates to 1, so the relation simplifies to: 
  

€ 

qvib ≅ e
−hν /2kT  19.36 

Thus at low temperature, the vibrational contribution to the equilibrium constant approximates to: 

  
  

€ 

Kvib = e−ξhν  /2kT


∏  19.37 

which has an exponential temperature dependence. 
 The full expression for the equilibrium constant calculated from partition functions for diatomic 
molecules is then: 

  

€ 

K = qi
trqi

rotqi
vib( )ξi

i
∏ = Mi

3/2 Ii
σ i

 

 
 

 

 
 
e−ξhν i /2kT

1− e−ξhν i /2kT
 

 
 

 

 
 

ξi

i
∏  19.38 

By use of the Teller-Redlich spectroscopic theorem*, this equation simplifies to: 

  

€ 

K =
1
σ i

mi
3/2 e−U /2

1− e−U
 

 
 

 

 
 

ξ

i
∏  19.39 

where m is the mass of the isotope exchanged and U is defined as: 

  

€ 

U =
hν
kT

=
hcω
kT

 19.40 

and ω is the vibrational wave number and c the speed of light. 
Example of fractionation factor calculated from partition functions 

 To illustrate the use of partition functions in calculating theoretical fractionation factors, we will do 
the calculation for a very simple reaction: the exchange of 18O and 16O between O2 and CO: 
  C16O + 18O16O = C18O + 16O2 19.41 
The choice of diatomic molecules greatly simplifies the equations.  Choosing even a slightly more com-
plex model, such as CO2 would complicate the calculation because there are more vibrational modes 
possible.  Chacko et al. (2001) provide an example of the calculation for more complex molecules such 
as CO2.  
 The equilibrium constant for our reaction is: 

  

€ 

K =
[16O2 ][C

18O]
[18O16O][C16O]

 19.42 

                                                
* The Teller-Redlich Theorem relates the products of the frequencies for each symmetry type of the two isotopes to 
the ratios of their masses and moments of inertia: 

€ 

m2

m1

 

 
 

 

 
 

3/2
I1
I2

M1

M 2

 

 
 

 

 
 

3/2

=
U1

U2

 

  where m is the isotope mass and M is the molecular mass.  We need not concern ourselves with its details. 
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where we are using the brackets in the unusual chemical sense to denote concentration.  We can use 
concentrations rather than activities or fugacities because the activity coefficient of a phase is independ-
ent of its isotopic compositions.  The fractionation factor, α, is defined as: 

  

€ 

α =
(18O /16O)CO
(18O /16O)O2

 19.43 

We must also consider the exchange reaction: 18O18O + 16O16O = 216O18O 
for which we can write a second equilibrium constant, K2.  It turns out that when both reactions are 
considered, α ≈ 2K.  The reason for this is as follows.  The isotope ratio in molecular oxygen is related to 
the concentration of the 2 molecular species as: 

  

€ 

18O
16O
 

 
 

 

 
 
O2

=
[18O16O]

[18O16O]+ 2[16O2 ]
 19.44 

(16O2 has 2 16O atoms, so it must be counted twice) whereas the ratio in CO is simply: 

  

€ 

18O
16O
 

 
 

 

 
 
CO

=
[C18O]
[C16O]

 19.45 

Letting the isotope ratio equal R, we can solve 19.44 for [18O16O]: 

  

€ 

[18O /16O]= 2
[16O2 ]RO2
1− RO2

 19.46 

and substitute it into 19.42:   

€ 

K =
(1− RO2 )[C

18O]
2RO2 [C

16O]
= 2
(1− RO2 )RCO

2RO2
 19.47 

Since the isotope ratio is a small number, the term (1 – R) ≈ 1, so that: 

  

€ 

K ≅ 2 RCO
2RO2

=
α
2

 19.48 

We can calculate K from the partition functions as: 

  

€ 

K =
q16O2

q
C18O

q18O16O
q
C16O

 19.49 

where each partition function is the product of the translational, rotational, and vibrational partition 
functions.  However, we will proceed by calculating an equilibrium constant for each mode of motion.  
The total equilibrium constant will then be the product of all three partial equilibrium constants.  For 
translational motion, we noted the ratio of partition functions reduces to the ratio of molecular masses 
raised to the 3/2 power.  Hence: 

  

€ 

Ktr =
q16O2

q
C18O

q18O16O
q
C16O

=
M 16O2

M
C18O

M 18O16O
M

C16O

 

 
  

 

 
  

3/2

=
32× 30
34 × 28
 

 
 

 

 
 
3/2

=1.0126  19.50 

We find that CO would be 12.6‰ richer in 18O if translational motions were the only modes of energy 
available. 
 In the expression for the ratio of rotational partition functions, all terms cancel except the moment of 
inertia and the symmetry factors. The symmetry factor is 1 for all the molecules involved except 16O2.  
In this case, the terms for bond length also cancel, so the expression involves only the reduced masses.  
So the expression for the rotational equilibrium constant becomes: 
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  Krot =
q16O2qC18O
q18O16OqC16O

=
I 16O2 IC18O
2I 18O16OIC16O









 =

1
2

16 ×16
16 +16

×
12 ×18
12 +18

18 ×16
18 +16

×
12 ×16
12 +16
















=
0.9916
2

 19.51 

(ignore the 1/2, it will cancel out later).  If rotation were the only mode of motion, CO would be 8‰ 
poorer in 18O. 
 The vibrational equilibrium constant may be expressed as: 

  

€ 

Kvib =
q16O2

q
C18O

q18O16O
q
C16O

= e
−h(ν16O2

+ν
C18O

−ν
C16O

−ν18O16O )

2KT  19.52 

 Since we expect the difference in vibrational frequencies to be quite small, we may make the ap-
proximation ex = x + 1.  Hence: 

  

€ 

Kvib ≅1+
h
2KT

ν
C16O

−ν
C18O{ }− ν 16O2

−ν 18O16O{ }[ ]  19.53 

 Let's make the simplification that the vibration frequencies are related to reduced mass as in a simple 
Hooke's Law harmonic oscillator: 

  

€ 

ν =
1
2π

k
µ

 19.54 

where k is the forcing constant,  and depends on the nature of the bond, and will be the same for all iso-
topes of an element.  In this case, we may write: 

  ν
C18O

= ν
C16O

µ
C16O

µ
C18O

= ν
C16O

6.857
7.2

= 0.976ν
C16O

 19.55 

A similar expression may be written relating the vibrational frequencies of the oxygen mole-
cule: ν O1816 O = 0.9718ν O2

16    
Substituting these expressions in the equilibrium constant expression, we have: 

  

€ 

Kvib =1+
h
2kT

ν
C16O
[1− 0.976]−ν 16O2

[1− 0.9718]( )  

The measured vibrational frequencies of CO and O2 are 6.50 × 1013 sec-1 and 4.74 × 1013 sec-1.  Substi-
tuting these values and values for the Planck and Boltzmann constants, we obtain: 

  Kvib = 1+
5.544
T

 

At 300 K (room temperature), this evaluates to 1.0185. 
 We may now write the total equilibrium constant expression as: 

  

K = KtrKrotKvib ≅
M 16O2

M
C18O

M 18O16O
M

C16O











3/2 µ16O2
µ
C18O

2µ18O16O
µ
C16O









 ×
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k
µ C16O

−
k
µ C18O









 −

k
µ 16O2

−
k
µ 18O16O



































 19.56 

Evaluating this at 300 K we have: 



Geol. 656 Isotope Geochemistry 
 

Lecture 19  Spring 2009 
 

 229 4/7/09 

  K = 1.0126 × 0.9916
2

×1.0185 = 1.023
2

 

Since α = 2K, the fractionation factor is 1.023 at 300 
K and would decrease by about 6 per mil per 100° 
temperature increase (however, we must bear in 
mind that our approximations hold only at low 
temperature).  This temperature dependence is 
illustrated in Figure 19.2.  Thus CO would be 23 
permil richer in the heavy isotope, 18O, than O2.  
This illustrates an important rule of stable isotope 
fractionations: 
The heavy isotope goes preferentially in the chemical 
compound in which the element is most strongly bound. 
 Translational and rotational energy modes are, 
of course, not available to solids.  Thus isotopic 
fractionations between solids are entirely con-
trolled by the vibrational partition function.  In 

principle, fractionations between coexisting solids could be calculated as we have done above.  The task 
is considerably complicated by the variety of vibrational modes available to a lattice.  The lattice may be 
treated as a large polyatomic molecule having 3N-6 vibrational modes, where N is the number of atoms 
in the unit cell.  For large N, this approximates to 3N.  Vibrational frequency and heat capacity are 
closely related because thermal energy in a crystal is stored as vibrational energy of the atoms in the lat-
tice.  Einstein and Debye independently treated the 
problem by assuming the vibrations arise from in-
dependent harmonic oscillations.  Their models can 
be used to predict heat capacities in solids. 
 The vibrational motions available to a lattice may 
be divided into 'internal' or 'optical' vibrations be-
tween individual radicals or atomic groupings 
within the lattice such as CO3, and Si–O.  The vi-
brational frequencies of these groups can be calcu-
lated from the Einstein function and can be meas-
ured by optical spectroscopy.  In addition, there are 
vibrations of the lattice as a whole, called 'acousti-
cal' vibrations, which can also be measured, but 
may be calculated from the Debye function.  From 
either calculated or observed vibrational frequen-
cies, partition function ratios may be calculated, 
which in turn are directly related to the frac-
tionation factor.  Generally, the optical modes are 
the primary contribution to the partition function 
ratios.  For example, for partitioning of 18O between 
water and quartz, the contribution of the acoustical 
modes is less than 10%.  The ability to calculate 
fractionation factors is particularly important at 
low temperatures where reaction rates are quite 
slow, and experimental determination of fractiona-
tion therefore difficult.  Figure 19.3 shows the cal-
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Figure 19.2.  Fractionation factor, α= 
(18O/16O)CO/ (18O/16O)O2, calculated from parti-
tion functions as a function of temperature. 
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Figure 19.3.  Calculated temperature depend-
encies of the fractionation of oxygen between 
water and quartz.  From Kawabe (1978). 
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culated fractionation factor between quartz and water as a function of temperature. 

FRACTIONATION OF SEVERAL ISOTOPES 
 In the example in the previous section we considered only the fractionation between 18O and 16O, and 
indeed almost all research on oxygen isotope fraction focuses on just these two isotopes.  However, a 
third isotope of oxygen, 17O, exists, although it is an order of magnitude less abundant that 18O (which 
is two orders of magnitude less abundant than 16O).  The reason for this focus is that, based on the the-
ory we have just reviewed, mass fractionation should depend on mass difference.  The mass difference 
between 17O and 16O is half the difference between 18O and 16O, hence we expect the fractionation be-
tween 17O and 16O to be half that between 18O and 16O.  In the example of fractionation between CO and 
O2 in the previous section, it is easy to show from equation 19.56 that through the range of tempera-
tures we expect near the surface of the Earth (or Mars) that the ratio of fractionation factors ∆17O/∆18O 
should be ≈ 0.53.  In the limit of infinite temperature, ∆17O/∆18O ≈ 0.52.  The empirically observed ratio 
for terrestrial fractionation (and also within classes of meteorites) is ∆17O/∆18O ≈ 0.52.  Because the frac-
tionation between 17O and 16O bears a simple relationship to that between 18O and 16O, the 17O/16O ratio 
is rarely measured.  However, as we saw in Lecture 12, not all O isotope variation in solar system mate-
rials follows the expected mass-dependent fractionation.  Furthermore, we saw that there is laboratory 
evidence that mass-independent fractionation can occur.   Mass independent fractionation has subse-
quently been demonstrated to occur in nature, and indeed may provide important clues to Earth and 
Solar System processes and history, and we will return to this topic later. 

KINETIC FRACTIONATION 
 Kinetic effects are normally associated with fast, incomplete, or unidirectional processes like evapora-
tion, diffusion and dissociation reactions.  As an example, recall that temperature is related to the aver-
age kinetic energy.  In an ideal gas, the average kinetic energy of all molecules is the same.  The kinetic 
energy is given by: 

  

€ € 

E =
1
2
mv2  19.57 

Consider two molecules of carbon dioxide, 12C16O2 and 13C16O2, in such a gas.  If their energies are equal, 
the ratio of their velocities is (45/44)1/2, or 1.011.  Thus 12C16O2 can diffuse 1.1% further in a given 
amount of time at a given temperature than 13C16O2.  This result, however, is largely limited to ideal 
gases, i.e., low pressures where collisions between molecules are infrequent and intermolecular forces 
negligible.  For the case of air, where molecular collisions are important, the ratio of the diffusion coeffi-
cients of the two CO2 species is the ratio of the square roots of the reduced masses of CO2 and air (mean 
molecular weight 28.8): 

  

€ 

D12CO2

D13CO2

=
µ 13CO2

µ 12CO2

=
17.561
17.406

=1.0044  19.58 

Hence we would predict that gaseous diffusion will lead to only a 4.4‰ fractionation. 
 In addition, molecules containing the heavy isotope are more stable and have higher dissociation en-
ergies than those containing the light isotope.  This can be readily seen in Figure 19.4.  The energy re-
quired to raise the D2 molecule to the energy where the atoms dissociate is 441.6 kJ/mole, whereas the 
energy required to dissociate the H2 molecule is 431.8 kJ/mole.  Therefore it is easier to break bonds 
such as C-H than C-D.  Where reactions go to completion, this difference in bonding energy plays no 
role: isotopic fractionations will be governed by the considerations of equilibrium discussed in the pre-
vious lecture.  Where reactions do not achieve equilibrium the lighter isotope will be preferentially concentrated 
in the reaction products, because of this effect of the bonds involving light isotopes in the reactants being 
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more easily broken.  Large kinetic effects are associated with biologically mediated reactions (e.g., bac-
terial reduction), because such reactions generally do not achieve equilibrium.  Thus 12C is enriched in 
the products of photosynthesis in plants (hydrocarbons) relative to atmospheric CO2, and 32S is en-
riched in H2S produced by bacterial reduction of sulfate. 
 We can express this in a more quantitative sense.  The rate at which reactions occur is given by: 
  

€ 

R = Ae−Eb /kT  19.59 
where A is a constant called the frequency factor and Eb is the barrier energy.  Referring to Figure 19.1, 
the barrier energy is the difference between the dissociation energy, ε, and the zero-point energy.  The 
constant A is independent of isotopic composition, thus the ratio of reaction rates between the HD 
molecule and the H2 molecule is: 

  

€ 

RD
RH

=
e−(ε−1 2hνD ) /kT

e−(ε−1 2hνH ) /kT
 19.60 

or 

€ 

RD
RH

= e(νH −νD )h /2kT  19.61 

Substituting for the various constants, and using the wavenumbers given in the caption to Figure 19.1 
(remembering that ω = cν where c is the speed of light) the ratio is calculated as 0.24; in other words we 
expect the H2 molecule to react four times faster than the HD molecule, a very large difference.  For 
heavier elements, the rate differences are smaller.  For example, the same ratio calculated for 16O2 and 
18O16O shows that the 16O will react about 15% faster than the 18O16O molecule. 
 The greater translational velocities of lighter molecules also allows them to break through a liquid 
surface more readily and hence evaporate more quickly than a heavy molecule of the same com-
position.  The transition from liquid to gas in the case of water also involves breaking hydrogen bonds 
that form between the hydrogen of one molecule and an oxygen of another.  This bond is weaker if 16O 
is involved rather than 18O, and thus is broken more easily, meaning H2

16O is more readily available to 
transform into the gas phase than H2

18O.  Thus water vapor above the ocean typically has δ18O around –
13 per mil, whereas at equilibrium the vapor should only be about 9 per mil lighter than the liquid. 

 Let's explore this example a bit further.  
An interesting example of a kinetic effect is 
the fractionation of O isotopes between 
water and water vapor.  This is another ex-
ample of Rayleigh distillation (or conden-
sation), as is fractional crystallization.  Let 
A be the amount of the species containing 
the major isotope, H2

16O, and B be the 
amount of the species containing the mi-
nor isotope, H2

18O.  The rate at which these 
species evaporate is proportional to the 
amount present: 
   dA=kAA  19.62a  
 and dB=kBB  19.62b 
Since the isotopic composition affects the 
reaction, or evaporation, rate, kA ≠ kB.  We'll 
call this ratio of the rate constants α.  Then 

   

€ 

dB
dA

=α
B
A

 19.63 

 
Figure 19.4.  Fractionation of isotope ratios during 
Rayleigh and equilibrium condensation.  δ is the per mil 
difference between the isotopic composition of original 
vapor and the isotopic composition as a function of ƒ, the 
fraction of vapor remaining. 
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Rearranging and integrating, we have 

  

€ 

ln B
B˚

=α ln A
A˚

 or     

€ 

B
B˚

=
A
A˚
 

 
 

 

 
 
α

 19.64 

where A° and B° are the amount of A and B originally present.  Dividing both sides by A/A° 

    

€ 

B /A
B˚/A˚

=
A
A˚
 

 
 

 

 
 
α−1

 19.65 

Since the amount of B makes up only a trace of the total amount of H2O present, A is essentially equal 
to the total water present, and A/A° is essentially identical to ƒ, the fraction of the original water re-
maining.  Hence:  

  

€ 

B /A
B˚/A˚

= ƒα−1 19.66 

Subtracting 1 from both sides, we have 

  

€ 

B /A− B˚/A˚
B˚/A˚

= ƒα−1 −1 19.67 

Comparing the left side of the equation to 26.1, we see the permil fractionation is given by: 

  δ = 1000( f α −1 −1)  19.68 
Of course, the same principle applies when water condenses from vapor. Assuming a value of α of 1.01, 
δ will vary with ƒ, the fraction of vapor remaining, as shown in Figure 28.1. 
 Even if the vapor and liquid remain in equilibrium throughout the condensation process, the isotopic 
composition of the remaining vapor will change continuously.  The relevant equation is: 

  

€ 

δ = 1− 1
(1− ƒ) /α + f

 

 
 

 

 
 ×1000 19.69 

The effect of equilibrium condensation is also shown in Figure 19.4. 
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