Melt Inclusions in Primitive Basalts

Adam Kent, Oregon State University

Oregon State

Key Questions

- What information do melt inclusions in primitive basalts provide?
- Where do variations in melt inclusions derive from?
- How do primitive magmas get processed by magma transport and eruption?

The message from melt inclusions: <u>Variability</u>

- In many basaltic systems it is clear that the <u>primary</u> <u>control</u> on melt inclusion compositions is the <u>variability</u> of melts present within the system
 - These are sampled by erupted lavas as well, but are <u>homogenized</u>
 - Implies large scale mixing of smaller melt "batches" is <u>extremely</u> widespread
- Melt inclusions and host lavas related by mixing

Why study (any) magmatism?

Why study (any) magmatism?

- Basaltic melt generation
 and transport systems
 are variable at scales
 smaller than individual
 eruptive units (factors of 10's)
- Phenocrysts show this, and some lavas too
- Melt inclusions sample this variation

Melt inclusions from MORB Mid Atlantic Ridge, 9° N

How does processing in a magma transport system effect lava and melt inclusion compositions?

Baffin Island Tertiary lavas

- Two lava types are present
 - Represent <u>mixtures</u> of two mantle sources
 - Enriched (E-type)
 - Depleted (N-type)
- Produced by mixing of depleted mantle and recycled lithosphere
- No crustal contamination (c.f. Yaxley et al., 2004 Kent et al. 2004)

0

10⁻⁴

10⁻²

Bulk K_D

10⁰

a)

Comparison between melt inclusions and host lavas

Variability in trace element composition is **driven by the** <u>same</u> <u>processes</u> in inclusions and in lavas

Another Example... (Kent et al. 2002)

Melt Inclusions from three samples

Aside: Contamination occurs early

Comparison of melt inclusions with host lava

One very anomalous crystal...

Conclusion:

In many cases melt inclusion composition are very variable compared to their host rocks, but the AVERAGE composition is comparable to the host lava composition.

Magma

Kellogg et al. 2002

Baffin Island melt inclusions

Two magma compositions

Randomized mixing experiment

Calculated compositions of 10⁴ random mixtures of two endmember melts

Calculated distribution used for starting composition

Melt Inclusion

Implications

Melt inclusions sample magma systems at smaller scales (spatial and temporal?) than lavas

But

They both sample the same material and are have variations that reflect the same processes We can argue about what these are... QuickTime™ and a decompressor are needed to see this picture. Maclennan (2003) sampled a single flow from Theistareykir, Iceland and looked at chemical variation between whole rock and melt inclusion samples

Differences between lava and melt inclusion samples consistent with difference in sampling volume of ~30 times.

Melt Inclusions in Primitive Olivine Phenocrysts: the Role of Localized Reaction Processes in the Origin of Anomalous Compositions

LEONID V. DANYUSHEVSKY¹*, ROMAN A. J. LESLIE¹, ANTHONY J. CRAWFORD¹ AND PATRICIA DURANCE^{1,2}

¹SCHOOL OF EARTH SCIENCES AND CENTRE FOR ORE DEPOSIT RESEARCH, UNIVERSITY OF TASMANIA PRIVATE BAG 79, HOBART, TAS. 7001, AUSTRALIA
²SCHOOL OF GEOSCIENCES, PO BOX 28E, MONASH UNIVERSITY, VIC. 3800, AUSTRALIA

Melt Inclusions showing anomalous compositions, possibly related to localized dissolution trends

Points to remember

- Melt inclusions are often highly variable with respect to the host and associated lavas
- It is VERY important to establish the relationship between melt inclusions and the rocks that host them
- The greater variability of melt inclusions may reflect the fact that they sample variable magmatic systems at smaller spatial scales
- Think carefull about anomalous or otherwise unrepresentative melt inclusions