

Exploration Considerations

- Depth level of exposure
- Mineralogical-chemical signature of ore
- Lithological-structural controls that localize ores
- Potential footprint of ore mineralization
- Telescoped ore zones (blind mineralization)
- Ore vs sub-economic mineralization

Answers found in mineralogy, mineral textures, mineral zonation, alteration extents, structure-stratigraphy, and rock geochemistry.

Surficial alteration (acid)

Tabular bodies of massive opal (opalite) form at the water table. They are a feature of the paleosurface in epithermal deposits. Breccia textures are common probably a result of acid dissolution.

Muscovite (K-mica)	KAI ₃ Si ₃ O ₁₀ (OH) ₂
Andalusite	Al ₂ SiO ₅
Corundum	Al ₂ O ₃
Pyrophyllite	AISi ₂ O ₅ (OH)
Diaspore	AIO(OH)
Zunyite	Al ₁₃ Si ₅ O ₂₀ (OH) ₁₈ Cl
Kaolinite (Dickite)	Al ₂ Si ₂ O ₅ (OH) ₄
Dumortierite	Al ₇ BO ₃ (SiO ₄) ₃ (OH) ₃
Alunite	KAI ₃ (SO ₄) ₂ (OH) ₆
Natroalunite	NaAl ₃ (SO ₄) ₂ (OH) ₆
Crandallite (AP)	CaAl ₃ (PO ₄)(PO ₃ OH)(OH) ₆
Woodhouseite (APS)	CaAl ₃ (PO ₄)(SO ₄)(OH) ₆
	REE, Ca. Sr. Ba. Pb substitution

Advanced Argillic Alteration		
Steam-heated	Opal, alunite (white, powdery, fine-grained, pseudo-cubic), kaolinite, pyrite, marcasite	Develops at <120° C near the water table and in the shallowest epithermal environment through alteration by steam-heated acid-sulfate waters; locally associated with silica sinter but only in geothermal systems
Magmatic hydrothermal	Quartz, alunite (tabular), dickite, pyrophyllite, (diaspore, zunyite)	Develops at >200° C within the epithermal environment through alteration by magmatic derived acidic waters
Supergene	Alunite, kaolinite, halloysite, jarosite, Fe-oxides	Develops at <40° C through weathering and oxidation of sulfide-bearing rocks

Lepanto-Philippines

- enargite ore centered on Lepanto fault
- ore extends ~3km (bx, massive, vuggy residual qtz w/ alunite halo)
- upward from FSE, pervasive ser+clay+chl grades into pyrophyllite (w/ qtz+anhy+dick)
- crosscut & overlain by advanced argillic alteration (qtz+alun+anhy+dia+dick+pyroph)
- leached silica developed at unconformity & overlying dacitic rocks

White Island-andesitic volcano aerosols from 850°C discharge (1988)

> 100 tonnes Cu/yr .037 tonnes Au/yr

<1000 yrs to flux 1 million oz Au at White Island >6000 yrs to flux 1 million oz Au at Broadlands-Ohaaki

Acid sulphate T°C	chloride water 79
pН	1.4
Na	5910 ppm
K	635 ppm
	38700
CI	ppm
SO4	4870 ppm
HCO3	0 ppm
Hydrotherma alunite kaolinite quartz pyrite sulfur anhydrite	l minerals:

(Hedenquist et al., 1993)

Quartz-Alunite-Pyrophyllite-Kaolinite (High to intermediate sulfidation)

- · Associated with intermediate composition volcanic rocks
- Cu-Au ores assoc w/ massive to vuggy qtz (polymetalic ores)
- Secondary oxidation liberates refractory Au
- sharp lateral changes in alteration
- vertical zonation-vuggy qtz →pyrophyllite→ sericite w/ depth
- alteration sequence associated with neutralization of acidic fluids
- · shallow steam-heated advanced argillic alteration
- · cause of gold deposition: cooling, mixing, boiling?

	qtz-calc-adularia-illite	gtz-alun-pyroph-kaol
Quartz	ubiquitous (abundant)	ubiquitous (abundant)
Chalcedony	common (variable)	uncommon (minor)
Calcite	common (variable)	absent (except overprint)
Adularia	common (variable)	absent
Illite	common (abundant)	uncommon (minor)
Kaolinite	rare (except overprint)	common (minor)
Pyrophyllite-diaspore	absent	common (variable)
Alunite	absent (except overprint)	common (minor)
Barite	common (very minor)	common (minor)

Acknowledgements for graphics, collaborations, and inspiration:

Tawn Albinson, Antonio Arribas, Kevin Brown, Patrick Browne, Jorge Clavero, David Cooke, Cari Deyelle, Werner Giggenbach, Jeff Hedenquist, Dick Henley, Lloyd Homer, David John, Agnes Reyes, Julie Rowland, Dick Sillitoe, Sam Sawkins, Mark Simpson, Noel White, and Colin Wilson.