Sample Preparation and Analysis

Adam Kent, Oregon State University

Key Questions

- How do we prepare melt inclusions for physical and chemical measurements?
- What are good sample selection strategies?
- What are the most common analytical techniques? How do these compare?
- What are the limitations to chemical analysis?

Sample Preparation and Analysis

Melt Inclusions are Small!

The small size of melt inclusions requires specialized techniques for analysis. This produces information that is often more limited than can be obtained from bulk samples

Sample Preparation

- Goal: To prepare melt inclusions in such a way that they can be chemically analyzed and petrographically documented
- Technique specific (c.f. FTIR, SIMS, LA-ICP-MS)
- Variable strategies

Sample Selection

- Goal specific: Sampling strategy may depend on analytical and other strategies
 - e.g. Volatiles: Rapidly cooled samples, scoria, early erupted
 - Phenocryst-bearing, glassy, primitive, representative or endmember compositions
- Geologic record: only massive lavas survive unaltered

Melt inclusions require a LOT of work: sample selection is key!

Melt inclusions are NOT a reconnaissance tool - understand the rocks you are working with first!

Petrographic documentation

- Make key observations through examination in 3D
 - Size, shape, crystallinity, bubbles, location within host etc.
 - Basis for subsequent sample preparation (remelt or not) and analysis
- Best done in mineral separates using **petrographic** microscope
 - Ethanol or oil
 - Fluorboric acid wash
 - Initial polish
- Thin sections are less useful except for initial reconnaissance
 - Too thin apophyses vs. melt inclusions
 - Thick sections (> 100 µm) better

Inclusion Rehomogenization

- For most analytical techniques crystallized inclusion need to be melted and quenched prior to analysis
 - Produces a homogenous glass for microbeam analysis
 - Where $T_{heating} = T_{trapping}$ and inclusions have been closed to exchange this can also correct for PEC
- Some minerals also require rapid quench rates to prevent mineral growth on cooling

Fig. 3. Microscope heating stage designed by Sobolev et al. (1980). (1) Gas-tight sealed body cooled by water; (2) screwed lid; (3) optical quartz glass windows; (4) $Pt_{90}Rh_{10}$ heating element and ring-shaped metallic sample holder with $Pt-Pt_{90}Rh_{10}$ thermocouple; (5) electrode.

Schiano, 2003

Jake Lowenstern's USGS YVO Website

	Pros	Cons
Vertical Furnace	Multiple grains analyzed at a time Explicit redox control Less chance of venting/breaching Closer T control and rapid heating possible	T _{trapping} must be estimated, may require iteration No information obtained about homogenization process
Heating Stage	Observe heating Obtain independent measurements of T _{trapping} and temperatures of mineral dissolution	Slow - single crystal at a time No explicit redox control (He atmosphere) Complex in hydrous inclusions and sensitive to heating rate

O Micro-crystalline Melt Inclusions

Excessive heating can cause H₂O loss

Sample Preparation

- Guided by analytical strategy
 - Bulk grain mounts polished to arbitrary level
 - Prepare individually selected inclusions
- Mount in epoxy, Indium, polish as wafers

1/4" steel "bullet"

Double polished FTIR wafer

Fig. 1. Sketch of the polishing rig used to expose melt inclusions contained within olivine crystals. This rig concentrates polishing efforts only on the olivine crystals, allowing rapid exposure of large numbers of inclusions.

1" round epoxy grain mount

Weathering/Alteration of melt inclusion along fracture

Nielsen et al 1998

	JdF	JdF	JdF	Gorda	Gorda	Blanco	Blanco
	O-2	0-2	O-2	D9-2	D9-2	5R	5R
	intact	ruptured	oxidized	intact	ruptured	intact	ruptured
SiO,	50.03	50.39	55.39	49.75	49.42	50.00	43.75
TiO	0.70	0.82	1.33	0.41	1.08	0.78	0.69
Al_2O_3	17.47	17.07	16.57	16.95	16.98	17.49	18.02
FeÔ	8.03	7.67	0.23	7.43	8.31	8.14	5.02
MnO	0.13	0.31	0.51	0.13	0.24	0.13	10.22
MgO	9.07	8.66	9.87	10.68	9.14	8.47	6.96
CaO	13.09	13.13	14.57	13.01	12.72	12.20	12.16
Na ₂ O	1.47	1.73	0.63	1.92	1.97	2.73	2.25
K,Õ	0.04	0.12	0.36	0.02	0.11	0.17	0.16
P_2O_s	0.04	0.06	0.08	0.01	0.09	0.03	0.35
CÌ (p̃pm)	31	0	44	23	35	43	43
S (ppm)	1020	13	21	862	28	942	13
Total	100.07	99.96	99.54	100.31	100.06	100.14	99.58
Mg#	66.8	66.8	98.7	71.9	66.2	65.0	71.2

Nielsen et al 1998

Rehomogenized

Analysis of Melt Inclusions

	Major Elements	Trace Elements	Volatiles	Isotopes
EMPA	Yes		S*, CI	
SIMS		Yes	C,H,F,S,CI	H, Li, B, Cl, S, O, Pb
LA-ICP-MS	Maybe	Yes		Pb, Sr
FTIR			H*,C	

*plus speciation

Wallace

• EMPA

• FTIR

Trace Element Analysis

Melt inclusions are small: trace elements are present in ng-pg (10⁻⁹-10⁻¹²g) quantities

Laser Ablation ICP-MS

Inductively Coupled Plasma

- High operating temperatures
- High atomization and ionization
- Low molecular
 production/survival
- Linear relation between ion intensity and response over many OOM

Quadrupole Mass Analyzer

- Rapid mass scanning ability (2 ms dwell, 10 ms count)
- Can monitor multiple isotopes
 during individual analysis
- Coupled with dual stage electron multiplier detectors with linear dynamic range of 10⁸

- Time resolved Analysis TRA
- Signal intensity recorded as a function of time
- Analysis involves distinct phases
 - Background, Ablation, Washout

Counts vs Time

• Typically 30+ trace elements analyzed "simultaneously"

Secondary Ion Mass Spectrometry (SIMS, Ion microprobe)

BEWARE INTRUDERS! Science in Progress

Focused beam of ions (¹⁶O⁺, ¹³³Cs⁺) coupled with double-focusing mass spectrometer

SHRIMP at Stanford

Kobayashi et al 2004

Fig. 3. Backscattered electron (BSE) image of the homogenized glass inclusion in olivine phenocryst. Dendritic crystals are eliminated after the melting experiment. Observed cracks are formed during the quenching procedure. Bright parts are remaining Au coat from the ion probe analysis. Craters of Li–B–Pb isotope analyses by Cameca ims-1270 high mass resolution ion probe and of Li–B content analysis by Cameca ims-5f ion probe are observed.

Ionization

Positive secondary ions

Negative secondary ions (wrt positive)

Н		0 ⁺ _ Primary Postive Secondary													Не	¢		
Li	Be		Cs ⁺ Primary										С	N	0	F	N	e
Na	Mg		Negative Secondary								AI	Si	Р	S	CI	A	r	
к	Са	Sc	Ti	۷	Cr	Мг	Fe	Co	Ni	Cu	Zr	n Ga	Ge	As	s Se	BI	Kı	r
Rb	Sr	Y	Zr	Nł	M	o Tc	Ru	R	Pd	l Ag	Cd	l In	Sn	S	b Te	: 1	Xe	5
Cs	Ba	La	Hf	Тε	W	Re	09	lr	Pt	Au	Hę	j TI	Pb	Bi	i Po) At	Rı	n
Fr	Ra	Ac																
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				Th	Pa	U	Np	Pu	Am	Ст	Bk	Cf	Es	Fm	Md	No	Lr	
SIMS Volatile Measurements

- Measurement of H, C, F, CI, S as negative secondary ions
 - Very high sensitivity due to high ionization
 - MDL are in the 1-10 ppm range
 - H⁺ can also be analyzed
- Require low blank sample preparation and most mounts are now prepared with Indium metal not epoxy

Hauri et al. 2002

In-situ Analysis: Key Variables

• Precision: $s = \frac{\sqrt{n}}{n}$

$$s = \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$$

- R spatial resolution
- n number of counts
- B background counts
- C concentration
- Mininmum Detection Limit: MDL ∞

$$MDL \propto \frac{\sqrt{B}}{n} = 2\sqrt{B} \times \frac{C}{n}$$

• Spatial Resolution: $R \propto r^2 \propto n^2$

At higher spatial resolution n decreases and MDL and precision get worse This is a fundamental limit for in situ analyses

UY_{SIMS}>>UY_{LA-ICP-MS}

SIMS vs LA-ICP-MS

	SIMS	LA-ICP-MS
Resolution	5-30 µm	5-300 µm
Accuracy	5-15%	5-15%
Precision	2-20%	2-20%
Removal rate	µm/hour	µm/second
Useful Yield	10 ⁻² -10 ⁻³	10 ⁻⁴ -10 ⁻⁶
Analysis Time	30-60 min	1-2 min
Destructive?	Yes, can be minor	Very
Problematic elements	Transition metals, Rb, Pb, HREE, Iow masses, oxides	As, halogens, LLE, argides, oxides
Cost	US\$2-5 million	\$300-600K

Standardization

- **Problem 1:** Physics of laser ablation or ion sputtering are not sufficiently well understood to allow calculation of concentrations directly from measured ion intensities
- **Problem 2:** Intensity of counts will vary depending on tuning and instrumental parameters as well as with the efficiency of laser/ion beam "coupling"
- Solution 1: Calibrate by comparison to standard materials
- Standard 2: Use internal standard based calibration
 - Requires knowing the composition of an *internal standard* element (Ca, Si, Ti, Mg)

Mini Exercise

- Write an equation for the gradient (m)
- Write an equation for the straight line Assume the intercept = 0
- Using Ba/CaO as the y value write your equation so you relate Ba/CaO_{unknown} to ¹³⁷Ba⁺/⁴³Ca⁺_{unknown}
- Rearrange to calculate Baunknown

- C^{U}_{i} = the concentration of trace element *i* in unknown material U
- $C^{U_{S}}$ = the concentration of the internal standard element S in the unknown material U.
- C_i^R / C_s^R = the ratio of the known concentrations of trace element *i* to the internal standard element *S* in reference standard *R*.
- I_{ij}^{R}/I_{Sk}^{R} = normalized ion yield (the ratio of measured ion beam intensities) for isotope *j* of trace element *i* and isotope *k* of the internal standard element *S* in the reference standard
- I^{U}_{ij}/I^{U}_{Sk} = normalized ion yield for isotope *j* of trace element *i* and isotope *k* of the internal standard element *S* in the unknown material

For unknown element x, with measured isotope x⁺

LA-ICP-MS: Long term precision and accuracy

Summary of BHVO-2G LA-ICP-MS analyses over 11 month period at OSU. All concentrations calibrated by BCR-2G glass.

Whole Inclusion Ablation Technique

Halter et al. 2002

$$x = \frac{m^{\text{INCL}}}{m^{\text{MIX}}} = \frac{C_i^{\text{HOST}} - C_i^{\text{MIX}}}{C_i^{\text{HOST}} - C_i^{\text{INCL}}}$$

Halter et al. 2002

Isotopic Measurements

- SIMS: Light stable isotopes (H, Li, B, C, O, CI, S) and Pb
 - Somewhat reduced precision (0.1-1 per mil)
 - No ²⁰⁴Pb

• LA-ICP-MS (Sr, Pb)

Jackson and Hart, 2005

Points to remember

- Sample preparation for melt inclusion analysis is labour intensive - works best as part of a focused study
- Accurate trace element analyses are possible using in situ techniques, but there are some limitations
- Some isotopic measurements are also possible.
- The larger uncertainties in melt inclusion measurements are often offset by greater chemical variability