Evolution of Melt Inclusions

Adam Kent, Oregon State University

Oregon State

Key Questions

- What are the processes that control evolution of melt inclusions after trapping?
- Do these produce irreversible changes in composition?
- Can modification of melt inclusions during evolution be recognized and corrected?

Evolution of melt inclusions after trapping

Important impact on physical appearance <u>and</u> chemical compositions

Melt Inclusion Variations

- Crystallization
- Assimilation
- Magma mixing
- Source heterogeneity
- Degassing*

*i.e. things that drive changes in magma compositions

- Boundary layer Trapping
- Post-entrapment crystallization
- Re-equilibration with host or external melt[†]

 \dagger i.e. things that are unique to inclusions

Evolution of melt inclusions after trapping

Evolution of melt inclusions after trapping

Inclusion evolution: Key Factors

Temperature	Diffusivity Vapour solubility
Cooling rate	Mineral growth rate Quench vs crystallization
Vapour content and composition	Vapour exsolution PT Diffusivity Internal pressure
Size/geometry	Breach probability Diffusional exchange
Host mineral	Bulk modulus, Diffusivity, Compatibility
Composition	Diffusivity, Vapour solubility, Phase equilibria

Changes in Pressure

Bulk moduli silicate liquids < elastic moduli silicate minerals

Melt Inclusion Evolution

Post entrapment crystallization (PEC) Diffusional Equilibration Volatile Loss (Wallace) Tests for Inclusion Fidelity

Postentrapment Crystallization

Correction for postentrapment crystallization

<u>Experimental</u>

• Reheat to (estimated) trapping temperature

Numerical

• Based on chemical equilibrium

-Olivine: $K_D^{FeO*/MgO} =$ 0.33 ± 0.03

Loihi Seamount (Kent et al., 1999)

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Compatible elements are the <u>least robust</u> after correction for post-entrapment crystallization

Equilibration between Host and Inclusion

f(D,K_D,R/r,T)

Equilibration more rapid at

- Higher Diffusivity
- Higher Temperatures
- More compatible
- Larger inclusion
- Smaller host

Fe Loss

Yaxley et al. 2005

- Negative correlation between measured FeO* and Fo_{host}
- Anomalously low FeO* wrt liquid line of descent

Danyushevsky et al. 2000

Naturally quenched glassy melt inclusion
Homogenized melt inclusion

Trace element re-equilibration

- The most robust data sources in melt inclusions are <u>slow diffusing</u> and <u>incompatible</u> elements
 - Altered only by dilution/concentration
 - Ratios unchanged

Are incompatible trace elements affected by diffusional re-equilibration?

REE equilibration with host after 2500 years

0

10⁻⁴

10⁻²

Bulk K_D

10⁰

a)

Trace element re-equilibration

Spandler et al. 2007

Baffin Island olivine-hosted n = 103

No relation between diffusivity and variation or degree of enrichment/depletion

Preserve inter-crystal variations

Driving Force?

Investigating the Fidelity of Melt Inclusions

Investigate:

- 1. The relationship between inclusions and host minerals
- 2. Relationship between host crystals and host melt
- 3. Relationship between trapped melt compositions and host
- 4. Relationships amongst inclusions
- 5. Test specific hypotheses diffusion, boundary layer trapping etc.

Inclusions vs. Host

Sours-Page et al. 1998

Melt Inclusion K₂O (wt.%) (fractionation corrected)

Key Points

- After trapping melt inclusions may undergo significant changes - primarily related to crystallization of the host mineral
- Other potential phenomenon include diffusional equibration, vapour exsolution, crystallization and venting
- Careful examination of data can generally let you decide if inclusion compositions are reliable