Petrology at Ultrahigh Pressure

- phase relations at high P & T
- coesite recognition & textures
- diamond recognition & textures
- other UHP phases
- thermobarometry of eclogite
- P & T of record from UHP terranes
- retrogression of UHP rocks

<section-header><image>

Na Garnet				
trace elements in African kimberlites (ppm)				
Bishop et al. (1978)	Na ₂ O	P ₂ O ₅	K ₂ O	TiO ₂
	Lherzolite and ultramafic rocks			
Garnet Olivine Orthopyroxene	150–790 (340) 40–130 (90) 530–1900 (1070)	200-1040(460) 50-200(130) 0-90(50)	<20 <20 10-110(30)	160–5190(1470) 0–390(130) 10–1650(480)
	Eclogites and cpx megacryst			
Garnet	100-1420(610)	160940(530)	<20	210-7800(2000)
Na+ + Ti ⁴⁺ = Ca ²⁺ + Al ³⁺ (Chopin & Ferraris, 2003) Na+ + P ⁵⁺ = Mg ²⁺ + Si ⁴⁺			3 Ono (%1.w) 0 sev 1 0 0	& Yasuda (1996)

Motivation

Comprehensive & accurate P-T determinations for

degree of structural disruption

maximum depth of subduction/exhumation

temperatures in subduction zones

whether subducting sediment/crust adds to arc magmatism

*exchange of material between crust & mantle

<section-header><list-item><list-item><list-item><list-item>

Pinned by Solidus?

UHP rocks rarely experience hypersolidus temperatures

+UHP rocks that experience hypersolidus T recrystallize in the presence of melt during cooling & "freeze in" when crossing back below the solidus

•UHP rocks that experience hypersolidus T rarely exhumed because UHP terrane disaggregates as a result of melt-induced weakening

Pinned by Solidus?

*****UHP rocks rarely experience hypersolidus temperatures

UHP rocks that experience hypersolidus T recrystallize in the presence of melt during cooling & "freeze in" when crossing back below the solidus

• UHP rocks that experience hypersolidus T rarely exhumed because UHP terrane disaggregates as a result of melt-induced weakening

Pinned by Solidus?

*****UHP rocks rarely experience hypersolidus temperatures

UHP rocks that experience hypersolidus T recrystallize in the presence of melt during cooling & "freeze in" when crossing back below the solidus

UHP rocks that experience hypersolidus T rarely exhumed because UHP terrane disaggregates as a result of melt-induced weakening

