Formation of Melt Inclusions

Adam Kent, Oregon State University

Oregon State

Key Questions

- How do melt inclusions form?
- What are the key processes involved?
- Does the process of formation effect the changed composition?

How do melt inclusions form?

The widespread occurrence of melt inclusions in basaltic rocks shows that their formation is a normal part of the process of crystallization in igneous rocks

Melt inclusions form in regions of relatively <u>slow</u> crystal growth

Do the processes that lead to melt inclusion formation alter their compositions?

Olivine-hosted melt inclusions

Other common hosts: plagioclase, pyroxene (quartz and alkali feldspar in evolved rocks)

• des-STARK.

Fig. 1. Photograph showing the original drawings of silicate-melt inclusions in effusive and intrusive rocks by Sorby (1858). Silicate-melt inclusions where mainly studied in phenocrysts from lavas of the Vesuvius and in quartz grains in granites from Cornwall (e.g. St. Austell).

Melt Inclusion Formation

- Melt inclusions occur in regions of relatively low crystal growth
 - 1. Rapid crystal growth followed by textural equilibration
 - 2. Slow equilibrium crystal growth and surface defects
 - 3. Rapid dissolution followed by growth
 - 4. Healing of melt-filled fractures

Crystal Growth

- Occurs after viable nuclei are present
- Requires diffusion of crystal components in and latent heat out
- Diffusion depends on:
 - Temperature (D = $D_0 e^{-Ea/RT}$)
 - Melt structure and composition
 - Faster in wet, depolymerized melts
- Crystal growth occurs preferentially in the direction of strongest bonds (Si-O)
 - Amphibole and Pyroxene have elongate crystals
 - Micas form plates

Growth Rates Influence Crystal Shape

6.13 Experimentally determined plagioclase growth rates as a function of degree of undercooling, ΔT , in their equivalent melts.

Influence of cooling rate on crystal shape

- At higher rates of crystal growth (ie greater undercooling) crystal shapes increasingly depart from equilibrium
- Rapid growth favors disequilibrium growth along preferential directions
 - Diffusion favors longer crystals

Augite crystallites nucleating on plagioclase in Hawaiian basalt

Degree of undercooling

[100] [001] <u>50 μm</u>

Growth rate x viscosity

Faure et al. 2006

1. Rapid crystal growth followed by textural equilibration

1. Rapid disequilibrium growth (skeletal, hopper, dendritic)

2. Slower equilibrium overgrowth (tabular, equant)

Faure and Schiano, 2005

Melt inclusion formation is part of textural maturation

Experimental and natural closed dendritic olivine with melt inclusions (very fast cooling)

Blue Lake Maar, Oregon Cascades

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Faure & Schiano (2005)

Stromboli Volcano Photo courtesy of N. Metrich

Experimental & natural skeletal (hopper morphology) olivine with melt inclusions (faster cooling)

Faure & Schiano (2005)

Milman-Barris et al. 2007

- 1. Slow equilibrium growth (local growth defects, minerals)
- 2. Continued slow overgrowth (tabular, equant)

Experimental and natural polyhedral olivine with melt inclusions (slow cooling)

Faure & Schiano (2005)

Keanakakoi Ash, Kilauea, Hawaii

These inclusions probably represent the majority of analyzed melt inclusions

3. Rapid dissolution and growth

Melt inclusions in Plagioclase

QuickTime[™] and a decompressor are needed to see this picture.

Melt inclusions in Plagioclase

Blundy and Cashman, 2005 Geology

Fig. 5. A schematic illustration of cross-section cut by (100) showing that the dissolution proceeds through congruent dissolution and recrystallization process with subordinate diffusion in plagioclase.

Nakamura and Shimakita, 1998

Fig. 5. A schematic illustration of cross-section cut by (100) showing that the dissolution proceeds through congruent dissolution and recrystallization process with subordinate diffusion in plagioclase.

Michael et al. 2002

4. Melt filled fractures

Typically small, hard to measure, define planar surface.

Schiano 2003

Faure and Schiano, 2005

Fig. 3. Backscattered electron images of (A) polyhedral forsterite containing closed and open (embayment) inclusions, and (B) polyhedral forsterite with a large curvilinear inclusion. Also shown are the crystal/liquid concentration profiles along the line A–B.

Baker et al. 2008

Do natural melt inclusions trap boundary layers?

Fig. 1 - Concentration of Ni and Ba in Mis in plivine from Mauna Loa as function of MI size

Fedele et al. 2009

• Most natural suites do not show clear indications of boundary layer effects

- Perhaps we sample larger inclusions (only significant at $< 30 \ \mu m$)
- •Longer isothermal times in natural samples
- •Are boundary layers static?
- Kinetic experiments

• Most natural suites do not show clear indications of boundary layer effects

- Perhaps we sample larger inclusions (only significant at $< 30 \ \mu m$)
- •Longer isothermal times in natural samples
- •Are boundary layers static?
- Kinetic experiments

CaO (wt.%)

Not all experimental studies show boundary layer effects

No relation between diffusivity and variation or degree of enrichment/depletion

Points to remember

- Melt inclusion formation is a normal part of crystallization of many minerals
- Inclusion formation occurs in a few different ways but rapid growth followed by textural equilibration is probably most important
- The compositions of most melt inclusions do not appear to be effected by the trapping process